BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2948821)

  • 1. Binding of ADP and orthophosphate during the ATPase reaction of nitrogenase.
    Cordewener J; ten Asbroek A; Wassink H; Eady R; Haaker H; Veeger C
    Eur J Biochem; 1987 Jan; 162(2):265-70. PubMed ID: 2948821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reinvestigation of the pre-steady-state ATPase activity of the nitrogenase from Azotobacter vinelandii.
    Mensink RE; Wassink H; Haaker H
    Eur J Biochem; 1992 Sep; 208(2):289-94. PubMed ID: 1325902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii.
    Duyvis MG; Wassink H; Haaker H
    Eur J Biochem; 1994 Nov; 225(3):881-90. PubMed ID: 7957225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molybdenum nitrogenase of Azotobacter chroococcum. Tight binding of MgADP to the MoFe protein.
    Miller RW; Eady RR
    Biochem J; 1989 Nov; 263(3):725-9. PubMed ID: 2597127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogenase of Klebsiella pneumoniae. Reversibility of the reductant-independent MgATP-cleavage reaction is shown by MgADP-catalysed phosphate/water oxygen exchange.
    Thorneley RN; Ashby GA; Julius C; Hunter JL; Webb MR
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):735-41. PubMed ID: 1872810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of the MgATP and MgADP binding sites on the Fe protein of nitrogenase from Azotobacter vinelandii.
    Cordewener J; Haaker H; Van Ewijk P; Veeger C
    Eur J Biochem; 1985 May; 148(3):499-508. PubMed ID: 3873334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of magnesium adenosine 5'-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii.
    Hageman RV; Orme-Johnson WH; Burris RH
    Biochemistry; 1980 May; 19(11):2333-42. PubMed ID: 6930302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle.
    Duyvis MG; Wassink H; Haaker H
    Biochemistry; 1998 Dec; 37(50):17345-54. PubMed ID: 9860849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis of exchange of terminal phosphate groups of ATP and ADP by purified nitrogenase proteins.
    Miller RW; Robson RL; Yates MG; Eady RR
    Can J Biochem; 1980 Jul; 58(7):542-8. PubMed ID: 7004607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductant-independent ATP hydrolysis catalyzed by homologous nitrogenase proteins from Azotobacter vinelandii and heterologous crosses with Clostridium pasteuranium.
    Larsen C; Christensen S; Watt GD
    Arch Biochem Biophys; 1995 Nov; 323(2):215-22. PubMed ID: 7487080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of MgATP hydrolysis in nitrogenase catalysis.
    Cordewener J; Krüse-Wolters M; Wassink H; Haaker H; Veeger C
    Eur J Biochem; 1988 Mar; 172(3):739-45. PubMed ID: 2965012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic studies on electron transfer and interaction between nitrogenase components from Azotobacter vinelandii.
    Hageman RV; Burris RH
    Biochemistry; 1978 Oct; 17(20):4117-24. PubMed ID: 708696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vanadium nitrogenase of Azotobacter chroococcum. MgATP-dependent electron transfer within the protein complex.
    Thorneley RN; Bergström NH; Eady RR; Lowe DJ
    Biochem J; 1989 Feb; 257(3):789-94. PubMed ID: 2784670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-steady-state kinetics of nitrogenase from Azotobacter vinelandii. Evidence for an ATP-induced conformational change of the nitrogenase complex as part of the reaction mechanism.
    Duyvis MG; Wassink H; Haaker H
    J Biol Chem; 1996 Nov; 271(47):29632-6. PubMed ID: 8939894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex.
    Yousafzai FK; Eady RR
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):511-5. PubMed ID: 10215587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of nitrogenase of Klebsiella pneumoniae. Heterotropic interactions between magnesium-adenosine 5'-diphosphate and magnesium-adenosine 5'-triphosphate.
    Thorneley RN; Cornish-Bowden A
    Biochem J; 1977 Aug; 165(2):255-62. PubMed ID: 336036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39.
    Lanzilotta WN; Fisher K; Seefeldt LC
    J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of MgATP to the nitrogenase proteins from Azotobacter vinelandii.
    Cordewener J; Haaker H; Veeger C
    Eur J Biochem; 1983 Apr; 132(1):47-54. PubMed ID: 6601579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-transfer studies involving flavodoxin and a natural redox partner, the iron protein of nitrogenase. Conformational constraints on protein-protein interactions and the kinetics of electron transfer within the protein complex.
    Thorneley RN; Deistung J
    Biochem J; 1988 Jul; 253(2):587-95. PubMed ID: 3140782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.