These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 29488375)
1. Eriochrome Black T-Eu Yilmaz MD; Oktem HA Anal Chem; 2018 Mar; 90(6):4221-4225. PubMed ID: 29488375 [TBL] [Abstract][Full Text] [Related]
2. A Monostyryl Boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe for sequential sensing of copper (II) ions and dipicolinic acid as a biomarker of bacterial endospores. Cetinkaya Y; Yurt MNZ; Avni Oktem H; Yilmaz MD J Hazard Mater; 2019 Sep; 377():299-304. PubMed ID: 31173979 [TBL] [Abstract][Full Text] [Related]
3. Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Li X; Luo J; Jiang X; Yang M; Rasooly A Mikrochim Acta; 2021 Jan; 188(1):26. PubMed ID: 33404771 [TBL] [Abstract][Full Text] [Related]
4. A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Zhou Q; Fang Y; Li J; Hong D; Zhu P; Chen S; Tan K Talanta; 2021 Jan; 222():121548. PubMed ID: 33167252 [TBL] [Abstract][Full Text] [Related]
5. Ratiometric fluorescence detection of an anthrax biomarker with Eu Donmez M; Oktem HA; Yilmaz MD Carbohydr Polym; 2018 Jan; 180():226-230. PubMed ID: 29103500 [TBL] [Abstract][Full Text] [Related]
6. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Wang QX; Xue SF; Chen ZH; Ma SH; Zhang S; Shi G; Zhang M Biosens Bioelectron; 2017 Aug; 94():388-393. PubMed ID: 28324858 [TBL] [Abstract][Full Text] [Related]
7. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Zhang Y; Li B; Ma H; Zhang L; Zheng Y Biosens Bioelectron; 2016 Nov; 85():287-293. PubMed ID: 27183278 [TBL] [Abstract][Full Text] [Related]
8. Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores. Li Y; Li X; Wang D; Shen C; Yang M Mikrochim Acta; 2018 Aug; 185(9):435. PubMed ID: 30167800 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric and ratiometric fluorescent response for anthrax bio-indicator: A combination of rare earth MOF and rhodamine-derived dye. Li X; Zhao J; Zhu Y; Wang B; Wei X; Shao Y; Ma Y; Jiang T Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117999. PubMed ID: 31935655 [TBL] [Abstract][Full Text] [Related]
10. Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. Na M; Zhang S; Liu J; Ma S; Han Y; Wang Y; He Y; Chen H; Chen X J Hazard Mater; 2020 Mar; 386():121956. PubMed ID: 31884372 [TBL] [Abstract][Full Text] [Related]
11. Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection. Xu J; Shen X; Jia L; Zhang M; Zhou T; Wei Y Biosens Bioelectron; 2017 Jan; 87():991-997. PubMed ID: 27686603 [TBL] [Abstract][Full Text] [Related]
12. Placeholder Strategy with Upconversion Nanoparticles-Eriochrome Black T Conjugate for a Colorimetric Assay of an Anthrax Biomarker. Cheng ZH; Liu X; Zhang SQ; Yang T; Chen ML; Wang JH Anal Chem; 2019 Sep; 91(18):12094-12099. PubMed ID: 31434488 [TBL] [Abstract][Full Text] [Related]
13. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles. Donmez M; Yilmaz MD; Kilbas B J Hazard Mater; 2017 Feb; 324(Pt B):593-598. PubMed ID: 27852519 [TBL] [Abstract][Full Text] [Related]
14. Stimulus Response of TPE-TS@Eu/GMP ICPs: Toward Colorimetric Sensing of an Anthrax Biomarker with Double Ratiometric Fluorescence and Its Coffee Ring Test Kit for Point-of-Use Application. Huang C; Ma R; Luo Y; Shi G; Deng J; Zhou T Anal Chem; 2020 Oct; 92(19):12934-12942. PubMed ID: 32854503 [TBL] [Abstract][Full Text] [Related]
15. A Eu Yang H; Lu F; Zhan X; Tian M; Yuan Z; Lu C Talanta; 2020 Feb; 208():120368. PubMed ID: 31816769 [TBL] [Abstract][Full Text] [Related]
16. Fluorescent europium-modified polymer nanoparticles for rapid and sensitive anthrax sensors. Oh WK; Jeong YS; Song J; Jang J Biosens Bioelectron; 2011 Nov; 29(1):172-7. PubMed ID: 21893406 [TBL] [Abstract][Full Text] [Related]
17. Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples. Baig MMF; Chen YC Anal Bioanal Chem; 2018 Feb; 410(6):1805-1815. PubMed ID: 29368149 [TBL] [Abstract][Full Text] [Related]
18. A luminous off-on probe for the determination of 2,6-pyridinedicarboxylic acid as an anthrax biomarker based on water-soluble cadmium sulfide quantum dots. Li X; Deng L; Ma F; Yang M Mikrochim Acta; 2020 Apr; 187(5):287. PubMed ID: 32328804 [TBL] [Abstract][Full Text] [Related]
19. Dual excitation channel ratiometric fluorescent probes for visual and fluorescent detection of anthrax spore biomarker and tetracycline hydrochloride. Wei J; Gu Q; Er X; Sun J; Jin H Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124942. PubMed ID: 39128386 [TBL] [Abstract][Full Text] [Related]