These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29488808)

  • 41. Nd:YAG Laser Tattoo Removal in Individuals With Skin Phototypes IV-VI: A Case Series.
    Pincelli G; Sena MM; Pavani C
    J Lasers Med Sci; 2022; 13():e79. PubMed ID: 37041767
    [No Abstract]   [Full Text] [Related]  

  • 42. Efficacy of laser treatment of tattoos using lasers emitting wavelengths of 532 nm, 755 nm and 1064 nm.
    Prinz BM; Vavricka SR; Graf P; Burg G; Dummer R
    Br J Dermatol; 2004 Feb; 150(2):245-51. PubMed ID: 14996094
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.
    Tanghetti Md E; Jennings J
    Lasers Surg Med; 2018 Jan; 50(1):37-44. PubMed ID: 29111604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of the Alexandrite laser for removal of tattoos.
    Stafford TJ; Lizek R; Tan OT
    Lasers Surg Med; 1995; 17(1):32-8. PubMed ID: 7564854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of Q-switched alexandrite laser (755 nm, 100 nsec) for removal of traumatic tattoo of different origins.
    Moreno-Arias GA; Casals-Andreu M; Camps-Fresneda A
    Lasers Surg Med; 1999; 25(5):445-50. PubMed ID: 10602138
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficacy of the Q-switched Neodymium: Yttrium Aluminum Garnet Laser in the Treatment of Blue-black Amateur and Professional Tattoos.
    Lakshmi C; Krishnaswamy G
    Indian J Dermatol; 2015; 60(6):578-83. PubMed ID: 26677271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of SHR Mode IPL System with Alexandrite and Nd: YAG Lasers For Leg Hair Reduction.
    Karaca S; Kaçar SD; Ozuğuz P
    Balkan Med J; 2012 Dec; 29(4):401-5. PubMed ID: 25207042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A rapid tattoo removal technique using a combination of pulsed Er:YAG and Q-Switched Nd:YAG in a split lesion protocol.
    Sardana K; Ranjan R; Kochhar AM; Mahajan KG; Garg VK
    J Cosmet Laser Ther; 2015; 17(4):177-83. PubMed ID: 25588039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers.
    Lee WR; Hsiao CY; Chang ZY; Wang PW; Aljuffali IA; Lin JY; Fang JY
    Pharmaceutics; 2022 Feb; 14(2):. PubMed ID: 35214181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Treatment of tattoos with a 755-nm Q-switched alexandrite laser and novel 1064 nm and 532 nm Nd:YAG laser handpieces pumped by the alexandrite treatment beam.
    Bernstein EF; Bhawalkar J; Clifford J; Hsia J
    J Drugs Dermatol; 2010 Nov; 9(11):1333-9. PubMed ID: 21061754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The efficacy and the adverse reactions of laser-assisted tattoo removal - a prospective split study using nanosecond and picosecond lasers.
    Bäumler W; Breu C; Philipp B; Haslböck B; Berneburg M; Weiß KT
    J Eur Acad Dermatol Venereol; 2022 Feb; 36(2):305-312. PubMed ID: 34543473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Treatment of tattoos with a picosecond alexandrite laser: a prospective trial.
    Saedi N; Metelitsa A; Petrell K; Arndt KA; Dover JS
    Arch Dermatol; 2012 Dec; 148(12):1360-3. PubMed ID: 22986470
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative study of 1064 nm nanosecond, 1064 nm picosecond, 755 nm, and 595 nm lasers for tattoo removal: An essential role by macrophage.
    Du XJ; Zhou HM; Wang Z; Liu J; Wang JF; Li D; Wu TT; Chen B; Zeng WH
    Lasers Surg Med; 2022 Jul; 54(5):737-746. PubMed ID: 35289435
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laser tattoo removal.
    Bernstein EF
    Semin Plast Surg; 2007 Aug; 21(3):175-92. PubMed ID: 20567669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of a transparent perfluorodecalin-infused patch as an adjunct to laser-assisted tattoo removal: A pivotal trial.
    Biesman BS; Costner C
    Lasers Surg Med; 2017 Apr; 49(4):335-340. PubMed ID: 28319270
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laser tattoo removal: a clinical update.
    Ho SG; Goh CL
    J Cutan Aesthet Surg; 2015; 8(1):9-15. PubMed ID: 25949017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of the alexandrite laser (755 nm, 100 nsec) for tattoo pigment removal in an animal model.
    Fitzpatrick RE; Goldman MP; Ruiz-Esparza J
    J Am Acad Dermatol; 1993 May; 28(5 Pt 1):745-50. PubMed ID: 8496419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clearance of yellow tattoo ink with a novel 532-nm picosecond laser.
    Alabdulrazzaq H; Brauer JA; Bae YS; Geronemus RG
    Lasers Surg Med; 2015 Apr; 47(4):285-8. PubMed ID: 25899971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Laser hair removal: comparison of long-pulsed Nd:YAG, long-pulsed alexandrite, and long-pulsed diode lasers.
    Bouzari N; Tabatabai H; Abbasi Z; Firooz A; Dowlati Y
    Dermatol Surg; 2004 Apr; 30(4 Pt 1):498-502. PubMed ID: 15056137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Q-switched Nd:YAG laser treatment for labial lentigines associated with Peutz-Jeghers syndrome.
    Ge Y; Jia G; Lin T
    J Dtsch Dermatol Ges; 2015 Jun; 13(6):551-5. PubMed ID: 26018367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.