These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29488899)

  • 1. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications.
    Park SI; Trojak OJ; Lee E; Song JD; Kyhm J; Han I; Kim J; Yi GC; Sapienza L
    Nanotechnology; 2018 May; 29(20):205602. PubMed ID: 29488899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling.
    Lee EH; Song JD; Han IK; Chang SK; Langer F; Höfling S; Forchel A; Kamp M; Kim JS
    Nanoscale Res Lett; 2015; 10():114. PubMed ID: 25852409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of exciton behavior in type-II self-assembled GaSb/GaAs quantum dots.
    Qiu F; Qiu W; Li Y; Wang X; Zhang Y; Zhou X; Lv Y; Sun Y; Deng H; Hu S; Dai N; Wang C; Yang Y; Zhuang Q; Hayne M; Krier A
    Nanotechnology; 2016 Feb; 27(6):065602. PubMed ID: 26684716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence from Droplet-Etched GaAs Quantum Dots at and Close to Room Temperature.
    Ranasinghe L; Heyn C; Deneke K; Zocher M; Korneev R; Hansen W
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.
    Sapienza L; Liu J; Song JD; Fält S; Wegscheider W; Badolato A; Srinivasan K
    Sci Rep; 2017 Jul; 7(1):6205. PubMed ID: 28740160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lasing in ultra-narrow emission from GaAs quantum dots coupled with a two-dimensional layer.
    Jo M; Mano T; Sakoda K
    Nanotechnology; 2011 Aug; 22(33):335201. PubMed ID: 21775803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape and size control of InAs/InP (113)B quantum dots by Sb deposition during the capping procedure.
    Lu W; Bozkurt M; Keizer JG; Rohel T; Folliot H; Bertru N; Koenraad PM
    Nanotechnology; 2011 Feb; 22(5):055703. PubMed ID: 21178229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating Photoluminescence and Structural Properties of Uncapped and GaAs-Capped Epitaxial InGaAs Quantum Dots.
    Dey AB; Sanyal MK; Farrer I; Perumal K; Ritchie DA; Li Q; Wu J; Dravid V
    Sci Rep; 2018 May; 8(1):7514. PubMed ID: 29760396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm.
    Strauss M; Höfling S; Forchel A
    Nanotechnology; 2009 Dec; 20(50):505601. PubMed ID: 19907066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit.
    Bitton O; Haran G
    Acc Chem Res; 2022 Jun; 55(12):1659-1668. PubMed ID: 35649040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy.
    Mano T; Abbarchi M; Kuroda T; Mastrandrea CA; Vinattieri A; Sanguinetti S; Sakoda K; Gurioli M
    Nanotechnology; 2009 Sep; 20(39):395601. PubMed ID: 19724114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission.
    Sapienza L; Davanço M; Badolato A; Srinivasan K
    Nat Commun; 2015 Jul; 6():7833. PubMed ID: 26211442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared nano-imaging spectroscopy using a phase change mask method.
    Sato Y; Kanazawa S; Saiki T
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i10. PubMed ID: 25359798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-controlled growth of InP/GaInP quantum dots on GaAs substrates.
    Baumann V; Stumpf F; Steinl T; Forchel A; Schneider C; Höfling S; Kamp M
    Nanotechnology; 2012 Sep; 23(37):375301. PubMed ID: 22922443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal stability of the peak emission wavelength in multilayer InAs/GaAs QDs capped with a combination capping of InAlGaAs and GaAs.
    Adhikary S; Halder N; Chakrabarti S
    J Nanosci Nanotechnol; 2011 May; 11(5):4067-72. PubMed ID: 21780407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology and optical properties of single- and multi-layer InAs quantum dots.
    Hsu CC; Hsu RQ; Wu YH
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S149-54. PubMed ID: 20576720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Indistinguishable Single Photons from Droplet-Etched GaAs Quantum Dots Integrated in Single-Mode Waveguides and Beamsplitters.
    Hornung F; Pfister U; Bauer S; Cyrlyson's DR; Wang D; Vijayan P; Garcia AJ; Covre da Silva SF; Jetter M; Portalupi SL; Rastelli A; Michler P
    Nano Lett; 2024 Jan; 24(4):1184-1190. PubMed ID: 38230641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near infrared broadband emission of In0.35Ga0.65As quantum dots on high index GaAs surfaces.
    Wu J; Wang ZM; Dorogan VG; Li S; Mazur YI; Salamo GJ
    Nanoscale; 2011 Apr; 3(4):1485-8. PubMed ID: 21384043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates.
    Skiba-Szymanska J; Jamil A; Farrer I; Ward MB; Nicoll CA; Ellis DJ; Griffiths JP; Anderson D; Jones GA; Ritchie DA; Shields AJ
    Nanotechnology; 2011 Feb; 22(6):065302. PubMed ID: 21212488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.