These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29489326)

  • 1. Composition-Dependent Functionality of Copper Vanadate Photoanodes.
    Jiang CM; Segev G; Hess LH; Liu G; Zaborski G; Toma FM; Cooper JK; Sharp ID
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10627-10633. PubMed ID: 29489326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State of the Art Progress in Copper Vanadate Materials for Solar Water Splitting.
    Kalanur SS; Seetharamappa J; Sial QA; Pollet BG
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Heterogeneities and Composition-Reactivity Relationships in Copper Vanadate Photoanodes.
    Eichhorn J; Jiang CM; Cooper JK; Sharp ID; Toma FM
    ACS Appl Mater Interfaces; 2021 May; 13(20):23575-23583. PubMed ID: 33998233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and photoelectrochemical properties in the thin film system Cu-Fe-V-O and its ternary subsystems Fe-V-O and Cu-V-O.
    Kumari S; Junqueira JRC; Sarker S; Mehta A; Schuhmann W; Ludwig A
    J Chem Phys; 2020 Jul; 153(1):014707. PubMed ID: 32640827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Charge Separation in WO₃/CuWO₄ Composite Photoanodes for Photoelectrochemical Water Oxidation.
    Wang D; Bassi PS; Qi H; Zhao X; ; Wong LH; Xu R; Sritharan T; Chen Z
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Cheng BY; Yang JS; Cho HW; Wu JJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20032-9. PubMed ID: 27454929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge separation properties of Ta
    Han SG; Chae SY; Lee SY; Min BK; Hwang YJ
    Phys Chem Chem Phys; 2018 Jan; 20(4):2865-2871. PubMed ID: 29327002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation.
    Kim ES; Kang HJ; Magesh G; Kim JY; Jang JW; Lee JS
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17762-9. PubMed ID: 25232699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ni(II)-doped CuWO
    Nomellini C; Polo A; Grigioni I; Marra G; Dozzi MV; Selli E
    Photochem Photobiol Sci; 2023 Dec; 22(12):2759-2768. PubMed ID: 37831332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting.
    Kang JS; Noh Y; Kim J; Choi H; Jeon TH; Ahn D; Kim JY; Yu SH; Park H; Yum JH; Choi W; Dunand DC; Choe H; Sung YE
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6583-6588. PubMed ID: 28471078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape Controlled Synthesis of Copper Vanadate Platelet Nanostructures, Their Optical Band Edges, and Solar-Driven Water Splitting Properties.
    Khan I; Qurashi A
    Sci Rep; 2017 Oct; 7(1):14370. PubMed ID: 29084969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved charge separation via Fe-doping of copper tungstate photoanodes.
    Bohra D; Smith WA
    Phys Chem Chem Phys; 2015 Apr; 17(15):9857-66. PubMed ID: 25776231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices.
    Shi Y; Gimbert-Suriñach C; Han T; Berardi S; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):696-702. PubMed ID: 26651152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant induced copper vanadate (β-Cu
    Keerthana SP; Yuvakkumar R; Kumar PS; Ravi G; Velauthapillai D
    Environ Res; 2022 Aug; 211():112964. PubMed ID: 35202624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WO
    Choi J; Sudhagar P; Kim JH; Kwon J; Kim J; Terashima C; Fujishima A; Song T; Paik U
    Phys Chem Chem Phys; 2017 Feb; 19(6):4648-4655. PubMed ID: 28124693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the factors affecting the photoelectrode characteristics of a perylene/phthalocyanine bilayer working in the water phase.
    Abe T; Miyakushi S; Nagai K; Norimatsu T
    Phys Chem Chem Phys; 2008 Mar; 10(11):1562-8. PubMed ID: 18327312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical Properties and Behavior of α-SnWO
    Zhu Z; Sarker P; Zhao C; Zhou L; Grimm RL; Huda MN; Rao PM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1459-1470. PubMed ID: 27991759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrochemical properties of copper pyrovanadate (Cu
    Fontaine B; Benrkia Y; Blach JF; Mathieu C; Roussel P; Ayesh AI; Sayede A; Saitzek S
    RSC Adv; 2023 Apr; 13(18):12161-12174. PubMed ID: 37091600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.