BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29489336)

  • 1. Rewiring Calcium Signaling for Precise Transcriptional Reprogramming.
    Nguyen NT; He L; Martinez-Moczygemba M; Huang Y; Zhou Y
    ACS Synth Biol; 2018 Mar; 7(3):814-821. PubMed ID: 29489336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.
    Shao J; Wang M; Yu G; Zhu S; Yu Y; Heng BC; Wu J; Ye H
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6722-E6730. PubMed ID: 29967137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.
    Polstein LR; Gersbach CA
    Nat Chem Biol; 2015 Mar; 11(3):198-200. PubMed ID: 25664691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic control of calcium influx in mammalian cells.
    Lee YT; Chen R; Zhou Y; He L
    Methods Enzymol; 2021; 654():255-270. PubMed ID: 34120716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation.
    Mahas A; Neal Stewart C; Mahfouz MM
    Biotechnol Adv; 2018; 36(1):295-310. PubMed ID: 29197619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The STIM-Orai Pathway: Light-Operated Ca
    Ma G; Wen S; Huang Y; Zhou Y
    Adv Exp Med Biol; 2017; 993():117-138. PubMed ID: 28900912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling.
    Inaba H; Miao Q; Nakata T
    J Biol Chem; 2021; 296():100290. PubMed ID: 33453281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRAC channel-based optogenetics.
    Nguyen NT; Ma G; Lin E; D'Souza B; Jing J; He L; Huang Y; Zhou Y
    Cell Calcium; 2018 Nov; 75():79-88. PubMed ID: 30199756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology.
    Xu X; Qi LS
    J Mol Biol; 2019 Jan; 431(1):34-47. PubMed ID: 29958882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells.
    Ma D; Peng S; Xie Z
    Nat Commun; 2016 Oct; 7():13056. PubMed ID: 27694915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoactivatable CRISPR-Cas9 for optogenetic genome editing.
    Nihongaki Y; Kawano F; Nakajima T; Sato M
    Nat Biotechnol; 2015 Jul; 33(7):755-60. PubMed ID: 26076431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Manipulating Living Systems by Light].
    Sato M
    Yakugaku Zasshi; 2020; 140(8):993-1000. PubMed ID: 32741873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery.
    Chiarella AM; Butler KV; Gryder BE; Lu D; Wang TA; Yu X; Pomella S; Khan J; Jin J; Hathaway NA
    Nat Biotechnol; 2020 Jan; 38(1):50-55. PubMed ID: 31712774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.
    Lebar T; Jerala R
    Methods Mol Biol; 2018; 1772():191-203. PubMed ID: 29754229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.
    Zhou XX; Zou X; Chung HK; Gao Y; Liu Y; Qi LS; Lin MZ
    ACS Chem Biol; 2018 Feb; 13(2):443-448. PubMed ID: 28938067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetics for transcriptional programming and genetic engineering.
    Lan TH; He L; Huang Y; Zhou Y
    Trends Genet; 2022 Dec; 38(12):1253-1270. PubMed ID: 35738948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical control of mammalian endogenous transcription and epigenetic states.
    Konermann S; Brigham MD; Trevino A; Hsu PD; Heidenreich M; Cong L; Platt RJ; Scott DA; Church GM; Zhang F
    Nature; 2013 Aug; 500(7463):472-476. PubMed ID: 23877069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.