BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29489360)

  • 1. Complex Coacervation of Milk Proteins with Sodium Alginate.
    Ghorbani Gorji E; Waheed A; Ludwig R; Toca-Herrera JL; Schleining G; Ghorbani Gorji S
    J Agric Food Chem; 2018 Mar; 66(12):3210-3220. PubMed ID: 29489360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Nanocomplexes between Carboxymethyl Inulin and Bovine Serum Albumin via pH-Induced Electrostatic Interaction.
    Huang G; Liu J; Jin W; Wei Z; Ho CT; Zhao S; Zhang K; Huang Q
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31443488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotube-doped alginate gel as a novel carrier for BSA immobilization.
    Jiang Z; Xu S; Lu Y; Yuan W; Wu H; Lv C
    J Biomater Sci Polym Ed; 2006; 17(1-2):21-35. PubMed ID: 16411596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-selective coacervation with hyaluronic acid.
    Du X; Dubin PL; Hoagland DA; Sun L
    Biomacromolecules; 2014 Mar; 15(3):726-34. PubMed ID: 24517623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity.
    Xu Y; Mazzawi M; Chen K; Sun L; Dubin PL
    Biomacromolecules; 2011 May; 12(5):1512-22. PubMed ID: 21413681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast.
    Hébrard G; Hoffart V; Beyssac E; Cardot JM; Alric M; Subirade M
    J Microencapsul; 2010; 27(4):292-302. PubMed ID: 20163284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.
    Bardajee GR; Hooshyar Z
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterization of coated-microparticles based on whey protein/alginate using the Encapsulator device.
    Hébrard G; Hoffart V; Cardot JM; Subirade M; Beyssac E
    Drug Dev Ind Pharm; 2013 Jan; 39(1):128-37. PubMed ID: 22393914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and in vitro characterization of insulin loaded whey protein and alginate microparticles.
    Déat-Lainé E; Hoffart V; Cardot JM; Subirade M; Beyssac E
    Int J Pharm; 2012 Dec; 439(1-2):136-44. PubMed ID: 23064128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein.
    Suksamran T; Opanasopit P; Rojanarata T; Ngawhirunpat T; Ruktanonchai U; Supaphol P
    J Microencapsul; 2009 Nov; 26(7):563-70. PubMed ID: 19839791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs.
    Lin YH; Liang HF; Chung CK; Chen MC; Sung HW
    Biomaterials; 2005 May; 26(14):2105-13. PubMed ID: 15576185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery.
    Chen SC; Wu YC; Mi FL; Lin YH; Yu LC; Sung HW
    J Control Release; 2004 Apr; 96(2):285-300. PubMed ID: 15081219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pH and ionic strength on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-alginate interfaces.
    Harnsilawat T; Pongsawatmanit R; McClements DJ
    Biomacromolecules; 2006 Jun; 7(6):2052-8. PubMed ID: 16768433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning alginate β-lactoglobulin complex coacervation by modulating pH and temperature.
    Madsen M; Mohammad-Beigi H; Westh P; Aachmann FL; Svensson B
    Soft Matter; 2023 Feb; 19(8):1549-1559. PubMed ID: 36748314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.
    Bagre AP; Jain K; Jain NK
    Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastro-resistant characteristics of GRAS-grade enteric coatings for pharmaceutical and nutraceutical products.
    Czarnocka JK; Alhnan MA
    Int J Pharm; 2015; 486(1-2):167-74. PubMed ID: 25796126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding between proteins and cationic spherical polyelectrolyte brushes: effect of pH, ionic strength, and stoichiometry.
    Wang S; Chen K; Li L; Guo X
    Biomacromolecules; 2013 Mar; 14(3):818-27. PubMed ID: 23402270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and rheological characterizations of nanoparticles of environment-sensitive hydrophobic alginate in aqueous solution.
    Chen K; Li J; Feng Y; He F; Zhou Q; Xiao D; Tang Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):617-627. PubMed ID: 27770934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system.
    Xu Y; Zhan C; Fan L; Wang L; Zheng H
    Int J Pharm; 2007 May; 336(2):329-37. PubMed ID: 17223290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.
    Prabhu SM; Meenakshi S
    Carbohydr Polym; 2015 Apr; 120():60-8. PubMed ID: 25662688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.