These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29489367)

  • 1. Three-Dimensional Non-Close-Packed Structures of Oppositely Charged Colloids Driven by pH Oscillation.
    Long C; Lei QL; Ren CL; Ma YQ
    J Phys Chem B; 2018 Mar; 122(12):3196-3201. PubMed ID: 29489367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lane formation in oppositely charged colloids driven by an electric field: chaining and two-dimensional crystallization.
    Rex M; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051402. PubMed ID: 17677060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled multi-layer simple cubic photonic crystals of oppositely charged colloids in confinement.
    Sankaewtong K; Lei QL; Ni R
    Soft Matter; 2019 Apr; 15(15):3104-3110. PubMed ID: 30810154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When and Why Like-Sized, Oppositely Charged Particles Assemble into Diamond-like Crystals.
    Bishop KJ; Chevalier NR; Grzybowski BA
    J Phys Chem Lett; 2013 May; 4(9):1507-11. PubMed ID: 26282306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyion-induced aggregation of oppositely charged liposomes and charged colloidal particles: the many facets of complex formation in low-density colloidal systems.
    Cametti C
    Chem Phys Lipids; 2008 Oct; 155(2):63-73. PubMed ID: 18718458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Inverse Squeezing Flow on the Self-Assembly of Oppositely Charged Colloidal Particles under Electric Field.
    Yuan J; Takae K; Tanaka H
    Phys Rev Lett; 2022 Dec; 129(24):248001. PubMed ID: 36563242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of dissipative self-assembly of particles interacting through oscillatory forces.
    Tagliazucchi M; Szleifer I
    Faraday Discuss; 2016; 186():399-418. PubMed ID: 26762675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipative self-assembly of particles interacting through time-oscillatory potentials.
    Tagliazucchi M; Weiss EA; Szleifer I
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9751-6. PubMed ID: 24958868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic colloidal crystals of oppositely charged particles.
    Leunissen ME; Christova CG; Hynninen AP; Royall CP; Campbell AI; Imhof A; Dijkstra M; van Roij R; van Blaaderen A
    Nature; 2005 Sep; 437(7056):235-40. PubMed ID: 16148929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdiffusion and crystallization of oppositely charged colloids.
    Cerbelaud M; Tran CT; Ferrando R; Crespin B; Videcoq A
    Phys Chem Chem Phys; 2017 Nov; 19(46):31094-31102. PubMed ID: 29138770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoretic assembly of dimpled colloids into open packing structures.
    Jia Z; Sacanna S; Lee SS
    Soft Matter; 2017 Aug; 13(34):5724-5730. PubMed ID: 28758660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes.
    Guo Y; van Ravensteijn BGP; Evers CHJ; Kegel WK
    Langmuir; 2017 May; 33(18):4551-4558. PubMed ID: 28419800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particulate mobility in vertical deposition of attractive monolayer colloidal crystals.
    Tan KW; Koh YK; Chiang YM; Wong CC
    Langmuir; 2010 May; 26(10):7093-100. PubMed ID: 20099793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled Binary Photonic Crystals under the Active Confinement and Their Light Trapping.
    Huang TC; Zhou XP; Ren CL; Zhan P; Ma YQ
    Langmuir; 2020 Apr; 36(15):4224-4230. PubMed ID: 32216353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of wafer-size monolayer close-packed colloidal crystals via slope self-assembly and thermal treatment.
    Wu Y; Zhang C; Yuan Y; Wang Z; Shao W; Wang H; Xu X
    Langmuir; 2013 Nov; 29(46):14017-23. PubMed ID: 24147630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact and ordered colloidal clusters from assembly-disassembly cycles: a numerical study.
    Bochicchio D; Videcoq A; Studart AR; Ferrando R
    J Colloid Interface Sci; 2015 Feb; 440():198-203. PubMed ID: 25460706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable long range forces mediated by self-propelled colloidal hard spheres.
    Ni R; Cohen Stuart MA; Bolhuis PG
    Phys Rev Lett; 2015 Jan; 114(1):018302. PubMed ID: 25615510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction and observation of crystal structures of oppositely charged colloids.
    Hynninen AP; Christova CG; van Roij R; van Blaaderen A; Dijkstra M
    Phys Rev Lett; 2006 Apr; 96(13):138308. PubMed ID: 16712048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of size-controllable hexagonal non-close-packed colloidal crystals and binary colloidal crystals by pyrolysis combined with plasma-electron coirradiation of polystyrene colloidal monolayer.
    Kim JJ; Li Y; Lee EJ; Cho SO
    Langmuir; 2011 Mar; 27(6):2334-9. PubMed ID: 21319768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.