These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 29489489)
1. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Bihorac A; Ozrazgat-Baslanti T; Ebadi A; Motaei A; Madkour M; Pardalos PM; Lipori G; Hogan WR; Efron PA; Moore F; Moldawer LL; Wang DZ; Hobson CE; Rashidi P; Li X; Momcilovic P Ann Surg; 2019 Apr; 269(4):652-662. PubMed ID: 29489489 [TBL] [Abstract][Full Text] [Related]
2. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability study. Brennan M; Puri S; Ozrazgat-Baslanti T; Feng Z; Ruppert M; Hashemighouchani H; Momcilovic P; Li X; Wang DZ; Bihorac A Surgery; 2019 May; 165(5):1035-1045. PubMed ID: 30792011 [TBL] [Abstract][Full Text] [Related]
3. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform. Ren Y; Loftus TJ; Datta S; Ruppert MM; Guan Z; Miao S; Shickel B; Feng Z; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A JAMA Netw Open; 2022 May; 5(5):e2211973. PubMed ID: 35576007 [TBL] [Abstract][Full Text] [Related]
4. Optimizing predictive strategies for acute kidney injury after major vascular surgery. Filiberto AC; Ozrazgat-Baslanti T; Loftus TJ; Peng YC; Datta S; Efron P; Upchurch GR; Bihorac A; Cooper MA Surgery; 2021 Jul; 170(1):298-303. PubMed ID: 33648766 [TBL] [Abstract][Full Text] [Related]
5. Added Value of Intraoperative Data for Predicting Postoperative Complications: The MySurgeryRisk PostOp Extension. Datta S; Loftus TJ; Ruppert MM; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A J Surg Res; 2020 Oct; 254():350-363. PubMed ID: 32531520 [TBL] [Abstract][Full Text] [Related]
6. An automated machine learning-based model predicts postoperative mortality using readily-extractable preoperative electronic health record data. Hill BL; Brown R; Gabel E; Rakocz N; Lee C; Cannesson M; Baldi P; Olde Loohuis L; Johnson R; Jew B; Maoz U; Mahajan A; Sankararaman S; Hofer I; Halperin E Br J Anaesth; 2019 Dec; 123(6):877-886. PubMed ID: 31627890 [TBL] [Abstract][Full Text] [Related]
7. Deep-learning model for predicting 30-day postoperative mortality. Fritz BA; Cui Z; Zhang M; He Y; Chen Y; Kronzer A; Ben Abdallah A; King CR; Avidan MS Br J Anaesth; 2019 Nov; 123(5):688-695. PubMed ID: 31558311 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning Algorithm Identifies Patients at High Risk for Early Complications After Intracranial Tumor Surgery: Registry-Based Cohort Study. van Niftrik CHB; van der Wouden F; Staartjes VE; Fierstra J; Stienen MN; Akeret K; Sebök M; Fedele T; Sarnthein J; Bozinov O; Krayenbühl N; Regli L; Serra C Neurosurgery; 2019 Oct; 85(4):E756-E764. PubMed ID: 31149726 [TBL] [Abstract][Full Text] [Related]
9. Electrocardiographic deep learning for predicting post-procedural mortality: a model development and validation study. Ouyang D; Theurer J; Stein NR; Hughes JW; Elias P; He B; Yuan N; Duffy G; Sandhu RK; Ebinger J; Botting P; Jujjavarapu M; Claggett B; Tooley JE; Poterucha T; Chen JH; Nurok M; Perez M; Perotte A; Zou JY; Cook NR; Chugh SS; Cheng S; Albert CM Lancet Digit Health; 2024 Jan; 6(1):e70-e78. PubMed ID: 38065778 [TBL] [Abstract][Full Text] [Related]
10. A machine learning approach to predict early outcomes after pituitary adenoma surgery. Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460 [TBL] [Abstract][Full Text] [Related]
11. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
12. Risk Stratification for Major Postoperative Complications in Patients Undergoing Intra-abdominal General Surgery Using Latent Class Analysis. Kim M; Wall MM; Li G Anesth Analg; 2018 Mar; 126(3):848-857. PubMed ID: 28806210 [TBL] [Abstract][Full Text] [Related]
13. Investigating Risk Factors and Predicting Complications in Deep Brain Stimulation Surgery with Machine Learning Algorithms. Farrokhi F; Buchlak QD; Sikora M; Esmaili N; Marsans M; McLeod P; Mark J; Cox E; Bennett C; Carlson J World Neurosurg; 2020 Feb; 134():e325-e338. PubMed ID: 31634625 [TBL] [Abstract][Full Text] [Related]
14. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients]. Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290 [No Abstract] [Full Text] [Related]
15. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150 [TBL] [Abstract][Full Text] [Related]
16. Development of machine learning algorithms for prediction of discharge disposition after elective inpatient surgery for lumbar degenerative disc disorders. Karhade AV; Ogink P; Thio Q; Broekman M; Cha T; Gormley WB; Hershman S; Peul WC; Bono CM; Schwab JH Neurosurg Focus; 2018 Nov; 45(5):E6. PubMed ID: 30453463 [TBL] [Abstract][Full Text] [Related]
17. Leveraging electronic health records for predictive modeling of post-surgical complications. Weller GB; Lovely J; Larson DW; Earnshaw BA; Huebner M Stat Methods Med Res; 2018 Nov; 27(11):3271-3285. PubMed ID: 29298612 [TBL] [Abstract][Full Text] [Related]
18. Development and Application of a Machine Learning Approach to Assess Short-term Mortality Risk Among Patients With Cancer Starting Chemotherapy. Elfiky AA; Pany MJ; Parikh RB; Obermeyer Z JAMA Netw Open; 2018 Jul; 1(3):e180926. PubMed ID: 30646043 [TBL] [Abstract][Full Text] [Related]
19. Predicting Surgical Complications in Patients Undergoing Elective Adult Spinal Deformity Procedures Using Machine Learning. Kim JS; Arvind V; Oermann EK; Kaji D; Ranson W; Ukogu C; Hussain AK; Caridi J; Cho SK Spine Deform; 2018; 6(6):762-770. PubMed ID: 30348356 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of a Modified E-PASS and POSSUM System for Postoperative Risk Assessment in Patients with Spinal Disease. Chun DH; Kim DY; Choi SK; Shin DA; Ha Y; Kim KN; Yoon DH; Yi S World Neurosurg; 2018 Apr; 112():e95-e102. PubMed ID: 29277590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]