BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29489588)

  • 1. Disruption of the GluA2/GAPDH complex using TAT-GluA2NT1-3-2 peptide protects against AMPAR-mediated excitotoxicity after epilepsy.
    Zhang J; Qiao N; Ding X; Wang J
    Neuroreport; 2018 Mar; 29(5):432-439. PubMed ID: 29489588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of GluR2/GAPDH Complex Interaction by TAT-GluR2
    Mi Q; Yao G; Zhang GY; Zhang J; Wang J; Zhao P; Liu J
    Ann Clin Lab Sci; 2018 Jul; 48(4):460-468. PubMed ID: 30143487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear translocation of GluA2/ GAPDH promotes neurotoxicity after pilocarpine-induced epilepsy.
    Zhang J; Qiao N; Wang J; Li B
    Epilepsy Res; 2022 Jul; 183():106945. PubMed ID: 35636277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the GluR2/GAPDH complex protects against ischemia-induced neuronal damage.
    Zhai D; Li S; Wang M; Chin K; Liu F
    Neurobiol Dis; 2013 Jun; 54():392-403. PubMed ID: 23360709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the nuclear p53-GAPDH complex protects against ischemia-induced neuronal damage.
    Zhai D; Chin K; Wang M; Liu F
    Mol Brain; 2014 Mar; 7():20. PubMed ID: 24670206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of early life status epilepticus on the developmental expression profile of the GluA2 subunit of AMPA receptors.
    Szczurowska E; Ergang P; Kubová H; Druga R; Salaj M; Mareš P
    Exp Neurol; 2016 Sep; 283(Pt A):97-109. PubMed ID: 27288240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disrupting GluA2-GAPDH Interaction Affects Axon and Dendrite Development.
    Lee FH; Su P; Xie YF; Wang KE; Wan Q; Liu F
    Sci Rep; 2016 Jul; 6():30458. PubMed ID: 27461448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity.
    Wang M; Li S; Zhang H; Pei L; Zou S; Lee FJ; Wang YT; Liu F
    Mol Brain; 2012 Apr; 5():13. PubMed ID: 22537872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats.
    Malkin SL; Amakhin DV; Veniaminova EA; Kim KKh; Zubareva OE; Magazanik LG; Zaitsev AV
    Neuroscience; 2016 Jul; 327():146-55. PubMed ID: 27109923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated sterol regulatory elementary binding protein 1 and GluA2 levels in the hippocampal nuclear fraction of Genetic Absence Epilepsy Rats from Strasbourg.
    Sekar S; Omran E; Gopalakrishnan V; Howland JG; Snutch TP; Taghibiglou C
    Epilepsy Res; 2017 Oct; 136():1-4. PubMed ID: 28719803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of AMPA receptors in homocysteine-NMDA receptor-induced crosstalk between ERK and p38 MAPK.
    Poddar R; Chen A; Winter L; Rajagopal S; Paul S
    J Neurochem; 2017 Aug; 142(4):560-573. PubMed ID: 28543279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus.
    Rajasekaran K; Todorovic M; Kapur J
    Ann Neurol; 2012 Jul; 72(1):91-102. PubMed ID: 22829271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Moonlighting" GAPDH Protein Localizes with AMPA Receptor GluA2 and L1 Axonal Cell Adhesion Molecule at Fiber Cell Borders in the Lens.
    Frederikse PH; Nandanoor A; Kasinathan C
    Curr Eye Res; 2016; 41(1):41-9. PubMed ID: 25614994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PICK1 facilitates lasting reduction in GluA2 concentration in the hippocampus during chronic epilepsy.
    Lorgen JØ; Egbenya DL; Hammer J; Davanger S
    Epilepsy Res; 2017 Nov; 137():25-32. PubMed ID: 28888867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein phosphatase role in adenosine A1 receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury.
    Stockwell J; Chen Z; Niazi M; Nosib S; Cayabyab FS
    Neuropharmacology; 2016 Mar; 102():254-65. PubMed ID: 26626486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats.
    Langer M; Brandt C; Zellinger C; Löscher W
    Neuropharmacology; 2011; 61(5-6):1033-47. PubMed ID: 21736883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting PSD95-nNOS interaction by Tat-N-dimer peptide during status epilepticus is neuroprotective in MAM-pilocarpine rat model.
    Colciaghi F; Nobili P; Cipelletti B; Cagnoli C; Zambon S; Locatelli D; de Curtis M; Battaglia GS
    Neuropharmacology; 2019 Jul; 153():82-97. PubMed ID: 31047919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ketogenic diet exhibits neuroprotective effects in hippocampus but fails to prevent epileptogenesis in the lithium-pilocarpine model of mesial temporal lobe epilepsy in adult rats.
    Linard B; Ferrandon A; Koning E; Nehlig A; Raffo E
    Epilepsia; 2010 Sep; 51(9):1829-36. PubMed ID: 20633040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amelioration of water maze performance deficits by topiramate applied during pilocarpine-induced status epilepticus is negatively dose-dependent.
    Frisch C; Kudin AP; Elger CE; Kunz WS; Helmstaedter C
    Epilepsy Res; 2007 Feb; 73(2):173-80. PubMed ID: 17084066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear accumulation of GAPDH, GluA2 and p53 in post-mortem substantia nigral region of patients with Parkinson's disease.
    Sekar S; Taghibiglou C
    Neurosci Lett; 2020 Jan; 716():134641. PubMed ID: 31759082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.