These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29489788)

  • 21. Metal-dielectric-metal based narrow band absorber for sensing applications.
    Lu X; Wan R; Zhang T
    Opt Express; 2015 Nov; 23(23):29842-7. PubMed ID: 26698467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnification of photonic crystal fluorescence enhancement via TM resonance excitation and TE resonance extraction on a dielectric nanorod surface.
    Wu HY; Zhang W; Mathias PC; Cunningham BT
    Nanotechnology; 2010 Mar; 21(12):125203. PubMed ID: 20195016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing.
    Arora P; Talker E; Mazurski N; Levy U
    Sci Rep; 2018 Jun; 8(1):9060. PubMed ID: 29899340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly efficient unidirectional forward scattering induced by resonant interference in a metal-dielectric heterodimer.
    Sun S; Wang D; Feng Z; Tan W
    Nanoscale; 2020 Nov; 12(43):22289-22297. PubMed ID: 33146190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices.
    Li H; Xu Y; Xiang J; Li XF; Zhang CY; Tie SL; Lan S
    Nanoscale; 2016 Dec; 8(45):18963-18971. PubMed ID: 27808340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy.
    Li GC; Zhang YL; Lei DY
    Nanoscale; 2016 Apr; 8(13):7119-26. PubMed ID: 26962966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic TM-like cavity modes and the hybridization in multilayer metal-dielectric nanoantenna.
    Zhang XM; Xiao JJ; Zhang Q; Li LM; Yao Y
    Opt Express; 2015 Jun; 23(12):16122-32. PubMed ID: 26193585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering.
    Mehfuz R; Maqsood MW; Chau KJ
    Opt Express; 2010 Aug; 18(17):18206-16. PubMed ID: 20721210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.
    Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ
    Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultraviolet Interband Plasmonics With Si Nanostructures.
    Dong Z; Wang T; Chi X; Ho J; Tserkezis C; Yap SLK; Rusydi A; Tjiptoharsono F; Thian D; Mortensen NA; Yang JKW
    Nano Lett; 2019 Nov; 19(11):8040-8048. PubMed ID: 31560545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical study of extremely narrow plasmonic surface lattice resonances observed by MIM nanogratings under normal incidence in asymmetric environments.
    Yang X; Xia D; Li J
    Nanotechnology; 2022 Aug; 33(44):. PubMed ID: 35901661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relaying of the local enhanced electric-field using stacked gold bowtie nanoantennas.
    Ding Q; Toussaint KC
    Nanotechnology; 2019 Sep; 30(36):365202. PubMed ID: 31151116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photon confinement in a silicon cavity of an image sensor by plasmonic diffraction for near-infrared absorption enhancement.
    Yoshinaga T; Hashimoto K; Teranishi N; Ono A
    Opt Express; 2022 Sep; 30(20):35516-35525. PubMed ID: 36258501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas prepared from nanoparticles on imprinted mirrors.
    Yu CC; Tseng YC; Su PY; Lin KT; Shao CC; Chou SY; Yen YT; Chen HL
    Nanoscale; 2015 Mar; 7(9):3985-96. PubMed ID: 25567353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Properties of Plasmonic Mirror-Image Nanoepsilon.
    Lin JY; Tsai CY; Lin PT; Hsu TE; Hsiao CF; Lee PT
    Nanoscale Res Lett; 2016 Dec; 11(1):327. PubMed ID: 27405466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Forward and backward unidirectional scattering from plasmonic coupled wires.
    Poutrina E; Rose A; Brown D; Urbas A; Smith DR
    Opt Express; 2013 Dec; 21(25):31138-54. PubMed ID: 24514688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Individual gold dimers investigated by far- and near-field imaging.
    Lereu AL; Sanchez-Mosteiro G; Ghenuche P; Quidant R; van Hulst NF
    J Microsc; 2008 Feb; 229(Pt 2):254-8. PubMed ID: 18304081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing the loss of electric field enhancement for plasmonic core-shell nanoparticle dimers by high refractive index dielectric coating.
    Zhai Y; Deng L; Chen Y; Wang N; Huang Y
    J Phys Condens Matter; 2020 Mar; 32(10):105001. PubMed ID: 31658445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.