These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 29489798)

  • 1. Silicon arrayed waveguide gratings at 2.0-μm wavelength characterized with an on-chip resonator.
    Stanton EJ; Volet N; Bowers JE
    Opt Lett; 2018 Mar; 43(5):1135-1138. PubMed ID: 29489798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared.
    Stanton EJ; Volet N; Bowers JE
    Opt Express; 2017 Nov; 25(24):30651-30663. PubMed ID: 29221093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.
    Shang K; Pathak S; Guan B; Liu G; Yoo SJ
    Opt Express; 2015 Aug; 23(16):21334-42. PubMed ID: 26367981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. III-V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2-4 μm Wavelength Range.
    Wang R; Vasiliev A; Muneeb M; Malik A; Sprengel S; Boehm G; Amann MC; Šimonytė I; Vizbaras A; Vizbaras K; Baets R; Roelkens G
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28777291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications.
    Pathak S; Van Thourhout D; Bogaerts W
    Opt Lett; 2013 Aug; 38(16):2961-4. PubMed ID: 24104621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology.
    Wang J; Sheng Z; Li L; Pang A; Wu A; Li W; Wang X; Zou S; Qi M; Gan F
    Opt Express; 2014 Apr; 22(8):9395-403. PubMed ID: 24787827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical FFT/IFFT circuit realization using arrayed waveguide gratings and the applications in all-optical OFDM system.
    Wang Z; Kravtsov KS; Huang YK; Prucnal PR
    Opt Express; 2011 Feb; 19(5):4501-12. PubMed ID: 21369281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors.
    Okamoto K; Ishida K
    Opt Lett; 2013 Sep; 38(18):3530-3. PubMed ID: 24104806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser written arrayed waveguide gratings with integrated photonic lanterns.
    Douglass G; Dreisow F; Gross S; Withford MJ
    Opt Express; 2018 Jan; 26(2):1497-1505. PubMed ID: 29402023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides.
    Wang L; Bogaerts W; Dumon P; Selvaraja SK; Teng J; Pathak S; Han X; Wang J; Jian X; Zhao M; Baets R; Morthier G
    Appl Opt; 2012 Mar; 51(9):1251-6. PubMed ID: 22441469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution, high channel count mid-infrared arrayed waveguide gratings in silicon.
    Malik A; Spott A; Wang Y; Stanton EJ; Peters J; Bowers JE
    Opt Lett; 2020 Aug; 45(16):4551-4554. PubMed ID: 32797007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact ultrabroad-bandwidth cascaded arrayed waveguide gratings.
    van Wijk A; Doerr CR; Ali Z; Karabiyik M; Akca BI
    Opt Express; 2020 May; 28(10):14618-14626. PubMed ID: 32403499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D integrated wavelength demultiplexer based on a square-core fiber and dual-layer arrayed waveguide gratings.
    Jiang X; Yang Z; Liu Z; Dang Z; Ding Z; Chang Q; Zhang Z
    Opt Express; 2021 Jan; 29(2):2090-2098. PubMed ID: 33726409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides.
    Dai D; Wang Z; Bauters JF; Tien MC; Heck MJ; Blumenthal DJ; Bowers JE
    Opt Express; 2011 Jul; 19(15):14130-6. PubMed ID: 21934775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-crosstalk Si arrayed waveguide grating with parabolic tapers.
    Ye T; Fu Y; Qiao L; Chu T
    Opt Express; 2014 Dec; 22(26):31899-906. PubMed ID: 25607158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon photonic arrayed waveguide grating with 64 channels for the 2 µm spectral range.
    Liu Y; Wang X; Yao Y; Du J; Song Q; Xu K
    Opt Lett; 2022 Mar; 47(5):1186-1189. PubMed ID: 35230323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrayed waveguide grating spectrometers for astronomical applications: new results.
    Gatkine P; Veilleux S; Hu Y; Bland-Hawthorn J; Dagenais M
    Opt Express; 2017 Jul; 25(15):17918-17935. PubMed ID: 28789281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, simulation and characterization of integrated photonic spectrographs for astronomy: generation-I AWG devices based on canonical layouts.
    Stoll A; Madhav KV; Roth MM
    Opt Express; 2021 Aug; 29(16):24947-24971. PubMed ID: 34614838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency mid-infrared InGaAs/InP arrayed waveguide gratings.
    Karnik TS; Dao KP; Du Q; Diehl L; Pflügl C; Vakhshoori D; Hu J
    Opt Express; 2023 Jan; 31(3):5056-5068. PubMed ID: 36785457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings.
    Rank EA; Sentosa R; Harper DJ; Salas M; Gaugutz A; Seyringer D; Nevlacsil S; Maese-Novo A; Eggeling M; Muellner P; Hainberger R; Sagmeister M; Kraft J; Leitgeb RA; Drexler W
    Light Sci Appl; 2021 Jan; 10(1):6. PubMed ID: 33402664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.