These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 29489811)
1. Femtosecond two-photon-excited backward lasing of atomic hydrogen in a flame. Ding P; Ruchkina M; Liu Y; Alden M; Bood J Opt Lett; 2018 Mar; 43(5):1183-1186. PubMed ID: 29489811 [TBL] [Abstract][Full Text] [Related]
2. Gain mechanism of femtosecond two-photon-excited lasing effect in atomic hydrogen. Ding P; Ruchkina M; Liu Y; Alden M; Bood J Opt Lett; 2019 May; 44(9):2374-2377. PubMed ID: 31042226 [TBL] [Abstract][Full Text] [Related]
3. Detection of atomic oxygen in a plasma-assisted flame via a backward lasing technique. Ding P; Ruchkina M; Cont-Bernard DD; Ehn A; Lacoste DA; Bood J Opt Lett; 2019 Nov; 44(22):5477-5480. PubMed ID: 31730087 [TBL] [Abstract][Full Text] [Related]
4. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames. Kulatilaka WD; Patterson BD; Frank JH; Settersten TB Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770 [TBL] [Abstract][Full Text] [Related]
5. Three-photon-excited laser-induced fluorescence detection of atomic hydrogen in flames. Jain A; Wang Y; Kulatilaka WD Opt Lett; 2019 Dec; 44(24):5945-5948. PubMed ID: 32628192 [TBL] [Abstract][Full Text] [Related]
6. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames. Frank JH; Chen X; Patterson BD; Settersten TB Appl Opt; 2004 Apr; 43(12):2588-97. PubMed ID: 15119630 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence. Li B; Li X; Zhang D; Gao Q; Yao M; Li Z Opt Express; 2017 Oct; 25(21):25809-25818. PubMed ID: 29041244 [TBL] [Abstract][Full Text] [Related]
8. Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy. Kulatilaka WD; Lucht RP; Roy S; Gord JR; Settersten TB Appl Opt; 2007 Jul; 46(19):3921-7. PubMed ID: 17571128 [TBL] [Abstract][Full Text] [Related]
10. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament. Malevich PN; Maurer R; Kartashov D; Ališauskas S; Lanin AA; Zheltikov AM; Marangoni M; Cerullo G; Baltuška A; Pugžlys A Opt Lett; 2015 Jun; 40(11):2469-72. PubMed ID: 26030534 [TBL] [Abstract][Full Text] [Related]
11. Photochemical effects in two-photon-excited fluorescence detection of atomic oxygen in flames. Goldsmith JE Appl Opt; 1987 Sep; 26(17):3566-72. PubMed ID: 20490104 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous single-shot imaging of H and O atoms in premixed turbulent flames using femtosecond two-photon laser-induced fluorescence. Ruchkina M; Raveesh M; Dominguez A; Bood J; Brackmann C Opt Express; 2023 Apr; 31(8):12932-12943. PubMed ID: 37157442 [TBL] [Abstract][Full Text] [Related]
13. Photochemical effects in 205-nm, two-photon-excited fluorescence detection of atomic hydrogen in flames. Goldsmith JE Opt Lett; 1986 Jul; 11(7):416-8. PubMed ID: 19730649 [TBL] [Abstract][Full Text] [Related]
14. High-gain backward lasing in air. Dogariu A; Michael JB; Scully MO; Miles RB Science; 2011 Jan; 331(6016):442-5. PubMed ID: 21273482 [TBL] [Abstract][Full Text] [Related]
15. Two-photon-excited fluorescence of CO: experiments and modeling. Ruchkina M; Ding P; Aldén M; Bood J; Brackmann C Opt Express; 2019 Sep; 27(18):25656-25669. PubMed ID: 31510434 [TBL] [Abstract][Full Text] [Related]
16. Backward Lasing of Air plasma pumped by Circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK). Ding P; Mitryukovskiy S; Houard A; Oliva E; Couairon A; Mysyrowicz A; Liu Y Opt Express; 2014 Dec; 22(24):29964-77. PubMed ID: 25606926 [TBL] [Abstract][Full Text] [Related]