These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29489831)

  • 21. A hexapedal jointed-leg model for insect locomotion in the horizontal plane.
    Kukillaya RP; Holmes PJ
    Biol Cybern; 2007 Dec; 97(5-6):379-95. PubMed ID: 17926063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
    Krasny DP; Orin DE
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mathematical modeling study of inter-segmental coordination during stick insect walking.
    Daun-Gruhn S
    J Comput Neurosci; 2011 Apr; 30(2):255-78. PubMed ID: 20567889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gait transitions and modular organization of mammal locomotion.
    Maes L; Abourachid A
    J Exp Biol; 2013 Jun; 216(Pt 12):2257-65. PubMed ID: 23531814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
    Fischer H; Schmidt J; Haas R; Büschges A
    J Neurophysiol; 2001 Jan; 85(1):341-53. PubMed ID: 11152734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study.
    Fukuoka Y; Habu Y; Fukui T
    Sci Rep; 2015 Feb; 5():8169. PubMed ID: 25639661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turning and Radius Deviation Correction for a Hexapod Walking Robot Based on an Ant-Inspired Sensory Strategy.
    Zhu Y; Guo T; Liu Q; Zhu Q; Zhao X; Jin B
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Comparative Study of Adaptive Interlimb Coordination Mechanisms for Self-Organized Robot Locomotion.
    Sun T; Xiong X; Dai Z; Owaki D; Manoonpong P
    Front Robot AI; 2021; 8():638684. PubMed ID: 33912596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic turning and running of a hexapod robot using a separated and laterally arranged two-leg model.
    Chang IC; Lin PC
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 36947883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    J R Soc Interface; 2015 Sep; 12(110):0542. PubMed ID: 26289658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fault tolerant gait for a hexapod robot over uneven terrain.
    Yang JM; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):172-80. PubMed ID: 18244739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural control of interlimb oscillations. II. Biped and quadruped gaits and bifurcations.
    Pribe C; Grossberg S; Cohen MA
    Biol Cybern; 1997 Aug; 77(2):141-52. PubMed ID: 9323863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving horizontal plane locomotion via leg angle control.
    Wickramasuriya A; Schmitt J
    J Theor Biol; 2009 Feb; 256(3):414-27. PubMed ID: 18951907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A three-leg model producing tetrapod and tripod coordination patterns of ipsilateral legs in the stick insect.
    Tóth TI; Daun-Gruhn S
    J Neurophysiol; 2016 Feb; 115(2):887-906. PubMed ID: 26581871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical models of central pattern generators in locomotion: III. Interlimb model for the cat.
    Stafford FS; Barnwell GM
    J Mot Behav; 1985 Mar; 17(1):60-76. PubMed ID: 15140698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fault-tolerant locomotion of the hexapod robot.
    Yang JM; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(1):109-16. PubMed ID: 18255929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of leg touchdown for the control of locomotor activity in the walking stick insect.
    Schmitz J; Gruhn M; Büschges A
    J Neurophysiol; 2015 Apr; 113(7):2309-20. PubMed ID: 25652931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.
    Seipel JE; Holmes PJ; Full RJ
    Biol Cybern; 2004 Aug; 91(2):76-90. PubMed ID: 15322851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.