These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29489844)

  • 1. Phalangeal joints kinematics in ostrich (Struthio camelus) locomotion on sand.
    Zhang R; Ji Q; Han D; Wan H; Li X; Luo G; Xue S; Ma S; Yang M; Li J
    PLoS One; 2018; 13(2):e0191986. PubMed ID: 29489844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phalangeal joints kinematics during ostrich (
    Zhang R; Ji Q; Luo G; Xue S; Ma S; Li J; Ren L
    PeerJ; 2017; 5():e2857. PubMed ID: 28097064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plantar pressure distribution of ostrich during locomotion on loose sand and solid ground.
    Zhang R; Han D; Ma S; Luo G; Ji Q; Xue S; Yang M; Li J
    PeerJ; 2017; 5():e3613. PubMed ID: 28761792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toe function and dynamic pressure distribution in ostrich locomotion.
    Schaller NU; D'Août K; Villa R; Herkner B; Aerts P
    J Exp Biol; 2011 Apr; 214(Pt 7):1123-30. PubMed ID: 21389197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the speed on the webbed foot kinematics of mallard (
    Han D; Liu H; Tong Z; Pan J; Wang X
    PeerJ; 2023; 11():e15362. PubMed ID: 37214106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intertarsal joint of the ostrich (Struthio camelus): Anatomical examination and function of passive structures in locomotion.
    Schaller NU; Herkner B; Villa R; Aerts P
    J Anat; 2009 Jun; 214(6):830-47. PubMed ID: 19538629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.
    Rubenson J; Lloyd DG; Besier TF; Heliams DB; Fournier PA
    J Exp Biol; 2007 Jul; 210(Pt 14):2548-62. PubMed ID: 17601959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and energetic scaling relationships of running gait through ontogeny in the ostrich (Struthio camelus).
    Smith NC; Wilson AM
    J Exp Biol; 2013 Mar; 216(Pt 5):841-9. PubMed ID: 23155079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiographic Anatomy of the Metatarsophalangeal Joint and Digits of the Ostrich (Struthio camelus).
    Tehrani PR; Gilanpour H; Veshkini A
    J Avian Med Surg; 2017 Sep; 31(3):198-205. PubMed ID: 28891699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.
    Daley MA; Channon AJ; Nolan GS; Hall J
    J Exp Biol; 2016 Oct; 219(Pt 20):3301-3308. PubMed ID: 27802152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FEM analysis in excellent cushion characteristic of ostrich (Struthio camelus) toe pads.
    Zhang R; Ling L; Han D; Wang H; Yu G; Jiang L; Li D; Chang Z
    PLoS One; 2019; 14(5):e0216141. PubMed ID: 31116736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics.
    Rubenson J; Lloyd DG; Heliams DB; Besier TF; Fournier PA
    J R Soc Interface; 2011 May; 8(58):740-55. PubMed ID: 21030429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frictional performance of ostrich (Struthio camelus) foot sole on sand in all directions.
    Zhang R; Li G; Ma S; Pang H; Ren L; Zhang H; Su B
    Biomech Model Mechanobiol; 2021 Apr; 20(2):671-681. PubMed ID: 33481119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of particle size and thickness of quartz sand on the webbed foot kinematics of mallard (Anas platyrhynchos).
    Han D; Liu H; Hu J; Yang Q
    Biol Open; 2023 Sep; 12(9):. PubMed ID: 37605960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Adaptive Strategies of Mallard Feet in Response to Changes in Wetness and Compactness of the Sand Terrain.
    Han D; Hu J; Liu H; Ren L; Tong Z
    Integr Comp Biol; 2024 May; ():. PubMed ID: 38714330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle moment arms of pelvic limb muscles of the ostrich (Struthio camelus).
    Smith NC; Payne RC; Jespers KJ; Wilson AM
    J Anat; 2007 Sep; 211(3):313-24. PubMed ID: 17608640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of toe joint stiffness and toe shape on walking biomechanics.
    Honert EC; Bastas G; Zelik KE
    Bioinspir Biomim; 2018 Oct; 13(6):066007. PubMed ID: 30187893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion.
    Hutchinson JR; Rankin JW; Rubenson J; Rosenbluth KH; Siston RA; Delp SL
    PeerJ; 2015; 3():e1001. PubMed ID: 26082859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.