BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29490081)

  • 1. Noncanonical substrate preference of lambda exonuclease for 5'-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction.
    Wu T; Yang Y; Chen W; Wang J; Yang Z; Wang S; Xiao X; Li M; Zhao M
    Nucleic Acids Res; 2018 Apr; 46(6):3119-3129. PubMed ID: 29490081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae.
    Chen WY; Ho JW; Huang JD; Watt RM
    BMC Mol Biol; 2011 Apr; 12():16. PubMed ID: 21501469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enzymatic basis of processivity in lambda exonuclease.
    Subramanian K; Rutvisuttinunt W; Scott W; Myers RS
    Nucleic Acids Res; 2003 Mar; 31(6):1585-96. PubMed ID: 12626699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the interaction of lambda exonuclease with the ends of DNA.
    Mitsis PG; Kwagh JG
    Nucleic Acids Res; 1999 Aug; 27(15):3057-63. PubMed ID: 10454600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the Redβ C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein.
    Caldwell BJ; Zakharova E; Filsinger GT; Wannier TM; Hempfling JP; Chun-Der L; Pei D; Church GM; Bell CE
    Nucleic Acids Res; 2019 Feb; 47(4):1950-1963. PubMed ID: 30624736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA machine for sensitive and homogeneous DNA detection via lambda exonuclease assisted amplification.
    Liu L; Lei J; Gao F; Ju H
    Talanta; 2013 Oct; 115():819-22. PubMed ID: 24054668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants in nuclease specificity of Ape1 and Ape2, human homologues of Escherichia coli exonuclease III.
    Hadi MZ; Ginalski K; Nguyen LH; Wilson DM
    J Mol Biol; 2002 Feb; 316(3):853-66. PubMed ID: 11866537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digestion of Dynamic Substrate by Exonuclease Reveals High Single-Mismatch Selectivity.
    Yu Y; Ma L; Li L; Deng Y; Xu L; Liu H; Xiao L; Su X
    Anal Chem; 2018 Nov; 90(22):13655-13662. PubMed ID: 30379064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of sequence preference of tomaymycin- and anthramycin-DNA bonding by exonuclease III and lambda exonuclease digestion and UvrABC nuclease incision analysis.
    Pierce JR; Nazimiec M; Tang MS
    Biochemistry; 1993 Jul; 32(28):7069-78. PubMed ID: 8343501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder.
    van Oijen AM; Blainey PC; Crampton DJ; Richardson CC; Ellenberger T; Xie XS
    Science; 2003 Aug; 301(5637):1235-8. PubMed ID: 12947199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins.
    Foulk MS; Urban JM; Casella C; Gerbi SA
    Genome Res; 2015 May; 25(5):725-35. PubMed ID: 25695952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay of catalysis, fidelity, threading, and processivity in the exo- and endonucleolytic reactions of human exonuclease I.
    Shi Y; Hellinga HW; Beese LS
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6010-6015. PubMed ID: 28533382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain Structure of the Redβ Single-Strand Annealing Protein: the C-terminal Domain is Required for Fine-Tuning DNA-binding Properties, Interaction with the Exonuclease Partner, and Recombination in vivo.
    Smith CE; Bell CE
    J Mol Biol; 2016 Feb; 428(3):561-578. PubMed ID: 26780547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toroidal structure of lambda-exonuclease.
    Kovall R; Matthews BW
    Science; 1997 Sep; 277(5333):1824-7. PubMed ID: 9295273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection.
    Li LJ; Tian X; Kong XJ; Chu X
    Anal Sci; 2015; 31(6):469-73. PubMed ID: 26063007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity of the p53-associated 3'-5' exonuclease.
    Skalski V; Lin ZY; Choi BY; Brown KR
    Oncogene; 2000 Jul; 19(29):3321-9. PubMed ID: 10918588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriophage P22 Abc2 protein binds to RecC increases the 5' strand nicking activity of RecBCD and together with lambda bet, promotes Chi-independent recombination.
    Murphy KC
    J Mol Biol; 2000 Feb; 296(2):385-401. PubMed ID: 10669596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric ring assembly and chemo-mechanical melting by the interaction between 5'-phosphate and λ exonuclease.
    Yoo J; Lee G
    Nucleic Acids Res; 2015 Dec; 43(22):10861-9. PubMed ID: 26527731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Caenorhabditis elegans exonuclease-3 and evidence that a Mg2+-dependent variant exhibits a distinct mode of action on damaged DNA.
    Shatilla A; Ishchenko AA; Saparbaev M; Ramotar D
    Biochemistry; 2005 Sep; 44(38):12835-48. PubMed ID: 16171399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.