These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 29490246)

  • 1. HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties.
    Fleming PJ; Fleming KG
    Biophys J; 2018 Feb; 114(4):856-869. PubMed ID: 29490246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic α helix propensities compact hydrodynamic radii in intrinsically disordered proteins.
    English LR; Tilton EC; Ricard BJ; Whitten ST
    Proteins; 2017 Feb; 85(2):296-311. PubMed ID: 27936491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations.
    Nygaard M; Kragelund BB; Papaleo E; Lindorff-Larsen K
    Biophys J; 2017 Aug; 113(3):550-557. PubMed ID: 28793210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.
    Langridge TD; Tarver MJ; Whitten ST
    Proteins; 2014 Apr; 82(4):668-78. PubMed ID: 24150971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing, Analyzing, and Comparing the Radius of Gyration and Hydrodynamic Radius in Conformational Ensembles of Intrinsically Disordered Proteins.
    Ahmed MC; Crehuet R; Lindorff-Larsen K
    Methods Mol Biol; 2020; 2141():429-445. PubMed ID: 32696370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic Radii of Intrinsically Disordered Proteins: Fast Prediction by Minimum Dissipation Approximation and Experimental Validation.
    Waszkiewicz R; Michaś A; Białobrzewski MK; Klepka BP; Cieplak-Rotowska MK; Staszałek Z; Cichocki B; Lisicki M; Szymczak P; Niedzwiecka A
    J Phys Chem Lett; 2024 May; 15(19):5024-5033. PubMed ID: 38696815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Inferential Structure Determination of Ensembles for Intrinsically Disordered Proteins.
    Brookes DH; Head-Gordon T
    J Am Chem Soc; 2016 Apr; 138(13):4530-8. PubMed ID: 26967199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive tests and evaluation of the CHARMM36IDPSFF force field for intrinsically disordered proteins and folded proteins.
    Liu H; Song D; Zhang Y; Yang S; Luo R; Chen HF
    Phys Chem Chem Phys; 2019 Oct; 21(39):21918-21931. PubMed ID: 31552948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Sequence Composition, Patterning and Hydrodynamics on the Conformation and Dynamics of Intrinsically Disordered Proteins.
    Vovk A; Zilman A
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Obtaining Hydrodynamic Radii of Intrinsically Disordered Protein Ensembles by Pulsed Field Gradient NMR Measurements.
    Leeb S; Danielsson J
    Methods Mol Biol; 2020; 2141():285-302. PubMed ID: 32696363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of models for calculating the hydrodynamic radius of intrinsically disordered proteins.
    Pesce F; Newcombe EA; Seiffert P; Tranchant EE; Olsen JG; Grace CR; Kragelund BB; Lindorff-Larsen K
    Biophys J; 2023 Jan; 122(2):310-321. PubMed ID: 36518077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop formation and translational diffusion of intrinsically disordered proteins.
    Mühle S; Zhou M; Ghosh A; Enderlein J
    Phys Rev E; 2019 Nov; 100(5-1):052405. PubMed ID: 31869980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue-Specific Force Field Improving the Sample of Intrinsically Disordered Proteins and Folded Proteins.
    Yang S; Liu H; Zhang Y; Lu H; Chen H
    J Chem Inf Model; 2019 Nov; 59(11):4793-4805. PubMed ID: 31613621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PACSAB Server: A Web-Based Tool for the Study of Aggregation and the Conformational Ensemble of Disordered and Folded Proteins.
    Emperador A
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structural dynamics of proteins and nucleic acids with optical tweezers.
    Ritchie DB; Woodside MT
    Curr Opin Struct Biol; 2015 Oct; 34():43-51. PubMed ID: 26189090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building, Characterization, and Applications of Cuvette-FCS in Denaturant-Induced Expansion of Globular and Disordered Proteins.
    Sil TB; Sahoo B; Garai K
    Methods Enzymol; 2018; 611():383-421. PubMed ID: 30471694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.
    Perez RB; Tischer A; Auton M; Whitten ST
    Proteins; 2014 Dec; 82(12):3373-84. PubMed ID: 25244701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
    Huang J; Rauscher S; Nawrocki G; Ran T; Feig M; de Groot BL; Grubmüller H; MacKerell AD
    Nat Methods; 2017 Jan; 14(1):71-73. PubMed ID: 27819658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
    Kikhney AG; Svergun DI
    FEBS Lett; 2015 Sep; 589(19 Pt A):2570-7. PubMed ID: 26320411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range correlated dynamics in intrinsically disordered proteins.
    Parigi G; Rezaei-Ghaleh N; Giachetti A; Becker S; Fernandez C; Blackledge M; Griesinger C; Zweckstetter M; Luchinat C
    J Am Chem Soc; 2014 Nov; 136(46):16201-9. PubMed ID: 25331250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.