These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29490277)

  • 1. Quantitative Operating Principles of Yeast Metabolism during Adaptation to Heat Stress.
    Pereira T; Vilaprinyo E; Belli G; Herrero E; Salvado B; Sorribas A; Altés G; Alves R
    Cell Rep; 2018 Feb; 22(9):2421-2430. PubMed ID: 29490277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock.
    Vilaprinyo E; Alves R; Sorribas A
    BMC Bioinformatics; 2006 Apr; 7():184. PubMed ID: 16584550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress.
    Kanshin E; Kubiniok P; Thattikota Y; D'Amours D; Thibault P
    Mol Syst Biol; 2015 Jun; 11(6):813. PubMed ID: 26040289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments.
    Jiang H; Liu GL; Chi Z; Hu Z; Chi ZM
    Curr Genet; 2018 Apr; 64(2):479-491. PubMed ID: 29018921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways.
    Ye Y; Zhu Y; Pan L; Li L; Wang X; Lin Y
    Biochem Biophys Res Commun; 2009 Jul; 385(3):357-62. PubMed ID: 19463789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evolution: its principles and applications in developing stress-tolerant yeasts.
    Swamy KBS; Zhou N
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2067-2077. PubMed ID: 30659332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.
    Zuzuarregui A; Monteoliva L; Gil C; del Olmo Ml
    Appl Environ Microbiol; 2006 Jan; 72(1):836-47. PubMed ID: 16391125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The stress response in the yeast Saccharomyces cerevisiae].
    Folch-Mallol JL; Garay-Arroyo A; Lledías F; Covarrubias Robles AA
    Rev Latinoam Microbiol; 2004; 46(1-2):24-46. PubMed ID: 17061523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation.
    Mensonides FI; Brul S; Klis FM; Hellingwerf KJ; Teixeira de Mattos MJ
    Appl Environ Microbiol; 2005 Aug; 71(8):4531-8. PubMed ID: 16085846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomics in the detection of damage in microbial systems: cell wall stress in yeast.
    Arroyo J; Bermejo C; García R; Rodríguez-Peña JM
    Clin Microbiol Infect; 2009 Jan; 15 Suppl 1():44-6. PubMed ID: 19220354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation.
    Satomura A; Katsuyama Y; Miura N; Kuroda K; Tomio A; Bamba T; Fukusaki E; Ueda M
    Biotechnol Prog; 2013; 29(5):1116-23. PubMed ID: 24115578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical biology: safeguards and spurs.
    Stearns SC
    Nature; 2003 Jul; 424(6948):501-4. PubMed ID: 12891339
    [No Abstract]   [Full Text] [Related]  

  • 16. Adaptive evolution of nontransitive fitness in yeast.
    Buskirk SW; Rokes AB; Lang GI
    Elife; 2020 Dec; 9():. PubMed ID: 33372653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation.
    Dhar R; Sägesser R; Weikert C; Wagner A
    Mol Biol Evol; 2013 Mar; 30(3):573-88. PubMed ID: 23125229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does yeast respond to pressure?
    Fernandes PM
    Braz J Med Biol Res; 2005 Aug; 38(8):1239-45. PubMed ID: 16082465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations.
    de Melo HF; Bonini BM; Thevelein J; Simões DA; Morais MA
    J Appl Microbiol; 2010 Jul; 109(1):116-27. PubMed ID: 20002866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.
    García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM
    BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.