These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29490277)

  • 21. Size doesn't matter in the heat shock response.
    Pincus D
    Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proline as a stress protectant in the yeast Saccharomyces cerevisiae: effects of trehalose and PRO1 gene expression on stress tolerance.
    Kaino T; Takagi H
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2131-5. PubMed ID: 19734662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation.
    Voordeckers K; Verstrepen KJ
    Curr Opin Microbiol; 2015 Dec; 28():1-9. PubMed ID: 26202939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide expression analysis of yeast response during exposure to 4 degrees C.
    Murata Y; Homma T; Kitagawa E; Momose Y; Sato MS; Odani M; Shimizu H; Hasegawa-Mizusawa M; Matsumoto R; Mizukami S; Fujita K; Parveen M; Komatsu Y; Iwahashi H
    Extremophiles; 2006 Apr; 10(2):117-28. PubMed ID: 16254683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptomic analysis of the heat stress response for a commercial baker's yeast Saccharomyces cerevisiae.
    Varol D; Purutçuoğlu V; Yılmaz R
    Genes Genomics; 2018 Feb; 40(2):137-150. PubMed ID: 29892925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold adaptation in budding yeast.
    Schade B; Jansen G; Whiteway M; Entian KD; Thomas DY
    Mol Biol Cell; 2004 Dec; 15(12):5492-502. PubMed ID: 15483057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations.
    Mattenberger F; Sabater-Muñoz B; Hallsworth JE; Fares MA
    Environ Microbiol; 2017 Mar; 19(3):990-1007. PubMed ID: 27871139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene expression regulates metabolite homeostasis during the Crabtree effect: Implications for the adaptation and evolution of Metabolism.
    Rothman DL; Stearns SC; Shulman RG
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preliminary physiological characteristics of thermotolerant Saccharomyces cerevisiae clinical isolates identified by molecular biology techniques.
    Siedlarz P; Sroka M; Dyląg M; Nawrot U; Gonchar M; Kus-Liśkiewicz M
    Lett Appl Microbiol; 2016 Mar; 62(3):277-82. PubMed ID: 26693946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative stress responses of the yeast Saccharomyces cerevisiae.
    Jamieson DJ
    Yeast; 1998 Dec; 14(16):1511-27. PubMed ID: 9885153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose.
    Swan TM; Watson K
    FEMS Microbiol Lett; 1998 Dec; 169(1):191-7. PubMed ID: 9851052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple genomic changes associated with reorganization of gene regulation and adaptation in yeast.
    David L; Ben-Harosh Y; Stolovicki E; Moore LS; Nguyen M; Tamse R; Dean J; Mancera E; Steinmetz LM; Braun E
    Mol Biol Evol; 2013 Jul; 30(7):1514-26. PubMed ID: 23589456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The genomics of yeast responses to environmental stress and starvation.
    Gasch AP; Werner-Washburne M
    Funct Integr Genomics; 2002 Sep; 2(4-5):181-92. PubMed ID: 12192591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrative responses to high pH stress in S. cerevisiae.
    Ariño J
    OMICS; 2010 Oct; 14(5):517-23. PubMed ID: 20726779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences.
    Pérez-Landero S; Sandoval-Motta S; Martínez-Anaya C; Yang R; Folch-Mallol JL; Martínez LM; Ventura L; Guillén-Navarro K; Aldana-González M; Nieto-Sotelo J
    BMC Syst Biol; 2015 Jul; 9():42. PubMed ID: 26209979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Rpd3L HDAC complex is essential for the heat stress response in yeast.
    Ruiz-Roig C; Viéitez C; Posas F; de Nadal E
    Mol Microbiol; 2010 May; 76(4):1049-62. PubMed ID: 20398213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance.
    Yazawa H; Iwahashi H; Kamisaka Y; Kimura K; Uemura H
    Yeast; 2009 Mar; 26(3):167-84. PubMed ID: 19243079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray.
    Mahmud SA; Hirasawa T; Furusawa C; Yoshikawa K; Shimizu H
    J Biosci Bioeng; 2012 Apr; 113(4):526-8. PubMed ID: 22222142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses.
    Guillén-Gosálbez G; Sorribas A
    BMC Bioinformatics; 2009 Nov; 10():386. PubMed ID: 19930714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.