BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

668 related articles for article (PubMed ID: 29490301)

  • 1. Mdia1 is Crucial for Advanced Glycation End Product-Induced Endothelial Hyperpermeability.
    Zhou X; Weng J; Xu J; Xu Q; Wang W; Zhang W; Huang Q; Guo X
    Cell Physiol Biochem; 2018; 45(4):1717-1730. PubMed ID: 29490301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Src in Vascular Hyperpermeability Induced by Advanced Glycation End Products.
    Zhang W; Xu Q; Wu J; Zhou X; Weng J; Xu J; Wang W; Huang Q; Guo X
    Sci Rep; 2015 Sep; 5():14090. PubMed ID: 26381822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced glycation end products induce endothelial hyperpermeability via β-catenin phosphorylation and subsequent up-regulation of ADAM10.
    Weng J; Chen Z; Li J; He Q; Chen D; Yang L; Su H; Huang J; Yu S; Huang Q; Xu Q; Guo X
    J Cell Mol Med; 2021 Aug; 25(16):7746-7759. PubMed ID: 34227224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction.
    Zhang W; Zhang Y; Guo X; Zeng Z; Wu J; Liu Y; He J; Wang R; Huang Q; Chen Z
    Oxid Med Cell Longev; 2017; 2017():4082102. PubMed ID: 29209448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells.
    Guo XH; Huang QB; Chen B; Wang SY; Li Q; Zhu YJ; Hou FF; Fu N; Brunk UT; Zhao M
    APMIS; 2006 Dec; 114(12):874-83. PubMed ID: 17207088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced glycation end products induce immature angiogenesis in in vivo and ex vivo mouse models.
    Chen L; Cui Y; Li B; Weng J; Wang W; Zhang S; Huang X; Guo X; Huang Q
    Am J Physiol Heart Circ Physiol; 2020 Mar; 318(3):H519-H533. PubMed ID: 31922896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose causes endothelial cell damage via activation of advanced glycation end products-receptor system.
    Sotokawauchi A; Matsui T; Higashimoto Y; Yamagishi SI
    Diab Vasc Dis Res; 2019 Nov; 16(6):556-561. PubMed ID: 31375034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble RAGE attenuates AngII-induced endothelial hyperpermeability by disrupting HMGB1-mediated crosstalk between AT1R and RAGE.
    Jeong J; Lee J; Lim J; Cho S; An S; Lee M; Yoon N; Seo M; Lim S; Park S
    Exp Mol Med; 2019 Sep; 51(9):1-15. PubMed ID: 31562296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability.
    Wang L; Wu J; Guo X; Huang X; Huang Q
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose-dependent insulinotropic polypeptide (GIP) inhibits signaling pathways of advanced glycation end products (AGEs) in endothelial cells via its antioxidative properties.
    Ojima A; Matsui T; Maeda S; Takeuchi M; Yamagishi S
    Horm Metab Res; 2012 Jun; 44(7):501-5. PubMed ID: 22581648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HMGB1 increases permeability of the endothelial cell monolayer via RAGE and Src family tyrosine kinase pathways.
    Huang W; Liu Y; Li L; Zhang R; Liu W; Wu J; Mao E; Tang Y
    Inflammation; 2012 Feb; 35(1):350-62. PubMed ID: 21494799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways.
    Touré F; Fritz G; Li Q; Rai V; Daffu G; Zou YS; Rosario R; Ramasamy R; Alberts AS; Yan SF; Schmidt AM
    Circ Res; 2012 May; 110(10):1279-93. PubMed ID: 22511750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquiritin attenuates advanced glycation end products-induced endothelial dysfunction via RAGE/NF-κB pathway in human umbilical vein endothelial cells.
    Zhang X; Song Y; Han X; Feng L; Wang R; Zhang M; Zhu M; Jia X; Hu S
    Mol Cell Biochem; 2013 Feb; 374(1-2):191-201. PubMed ID: 23229233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta.
    Matsui T; Nakamura N; Ojima A; Nishino Y; Yamagishi SI
    Nutr Metab Cardiovasc Dis; 2016 Sep; 26(9):797-807. PubMed ID: 27212619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress.
    Dobi A; Rosanaly S; Devin A; Baret P; Meilhac O; Harry GJ; d'Hellencourt CL; Rondeau P
    Microvasc Res; 2021 Jan; 133():104098. PubMed ID: 33075405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of RAGE/ROCK1 Pathway in HMGB1-Induced Early Changes in Barrier Permeability of Human Pulmonary Microvascular Endothelial Cell.
    Zhao MJ; Jiang HR; Sun JW; Wang ZA; Hu B; Zhu CR; Yin XH; Chen MM; Ma XC; Zhao WD; Luan ZG
    Front Immunol; 2021; 12():697071. PubMed ID: 34745088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd.
    Sun Z; Li X; Massena S; Kutschera S; Padhan N; Gualandi L; Sundvold-Gjerstad V; Gustafsson K; Choy WW; Zang G; Quach M; Jansson L; Phillipson M; Abid MR; Spurkland A; Claesson-Welsh L
    J Exp Med; 2012 Jul; 209(7):1363-77. PubMed ID: 22689825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption.
    Wolfson RK; Chiang ET; Garcia JG
    Microvasc Res; 2011 Mar; 81(2):189-97. PubMed ID: 21146549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability in vitro and in vivo.
    Wu F; Guo X; Xu J; Wang W; Li B; Huang Q; Su L; Xu Q
    Diab Vasc Dis Res; 2016 Mar; 13(2):137-44. PubMed ID: 26607798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanism of advanced glycation end products-induced hyperpermeability in endothelial cells].
    Guo XH; Huang QB; Chen B; Wang SY; Hou FF; Fu N
    Sheng Li Xue Bao; 2005 Apr; 57(2):205-10. PubMed ID: 15830106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.