These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
681 related articles for article (PubMed ID: 29490301)
1. Mdia1 is Crucial for Advanced Glycation End Product-Induced Endothelial Hyperpermeability. Zhou X; Weng J; Xu J; Xu Q; Wang W; Zhang W; Huang Q; Guo X Cell Physiol Biochem; 2018; 45(4):1717-1730. PubMed ID: 29490301 [TBL] [Abstract][Full Text] [Related]
2. Role of Src in Vascular Hyperpermeability Induced by Advanced Glycation End Products. Zhang W; Xu Q; Wu J; Zhou X; Weng J; Xu J; Wang W; Huang Q; Guo X Sci Rep; 2015 Sep; 5():14090. PubMed ID: 26381822 [TBL] [Abstract][Full Text] [Related]
3. Advanced glycation end products induce endothelial hyperpermeability via β-catenin phosphorylation and subsequent up-regulation of ADAM10. Weng J; Chen Z; Li J; He Q; Chen D; Yang L; Su H; Huang J; Yu S; Huang Q; Xu Q; Guo X J Cell Mol Med; 2021 Aug; 25(16):7746-7759. PubMed ID: 34227224 [TBL] [Abstract][Full Text] [Related]
4. Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction. Zhang W; Zhang Y; Guo X; Zeng Z; Wu J; Liu Y; He J; Wang R; Huang Q; Chen Z Oxid Med Cell Longev; 2017; 2017():4082102. PubMed ID: 29209448 [TBL] [Abstract][Full Text] [Related]
5. Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells. Guo XH; Huang QB; Chen B; Wang SY; Li Q; Zhu YJ; Hou FF; Fu N; Brunk UT; Zhao M APMIS; 2006 Dec; 114(12):874-83. PubMed ID: 17207088 [TBL] [Abstract][Full Text] [Related]
6. Advanced glycation end products induce immature angiogenesis in in vivo and ex vivo mouse models. Chen L; Cui Y; Li B; Weng J; Wang W; Zhang S; Huang X; Guo X; Huang Q Am J Physiol Heart Circ Physiol; 2020 Mar; 318(3):H519-H533. PubMed ID: 31922896 [TBL] [Abstract][Full Text] [Related]
7. Fructose causes endothelial cell damage via activation of advanced glycation end products-receptor system. Sotokawauchi A; Matsui T; Higashimoto Y; Yamagishi SI Diab Vasc Dis Res; 2019 Nov; 16(6):556-561. PubMed ID: 31375034 [TBL] [Abstract][Full Text] [Related]
8. Soluble RAGE attenuates AngII-induced endothelial hyperpermeability by disrupting HMGB1-mediated crosstalk between AT1R and RAGE. Jeong J; Lee J; Lim J; Cho S; An S; Lee M; Yoon N; Seo M; Lim S; Park S Exp Mol Med; 2019 Sep; 51(9):1-15. PubMed ID: 31562296 [TBL] [Abstract][Full Text] [Related]
9. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability. Wang L; Wu J; Guo X; Huang X; Huang Q Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358333 [TBL] [Abstract][Full Text] [Related]
10. Glucose-dependent insulinotropic polypeptide (GIP) inhibits signaling pathways of advanced glycation end products (AGEs) in endothelial cells via its antioxidative properties. Ojima A; Matsui T; Maeda S; Takeuchi M; Yamagishi S Horm Metab Res; 2012 Jun; 44(7):501-5. PubMed ID: 22581648 [TBL] [Abstract][Full Text] [Related]
11. HMGB1 increases permeability of the endothelial cell monolayer via RAGE and Src family tyrosine kinase pathways. Huang W; Liu Y; Li L; Zhang R; Liu W; Wu J; Mao E; Tang Y Inflammation; 2012 Feb; 35(1):350-62. PubMed ID: 21494799 [TBL] [Abstract][Full Text] [Related]
12. Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. Touré F; Fritz G; Li Q; Rai V; Daffu G; Zou YS; Rosario R; Ramasamy R; Alberts AS; Yan SF; Schmidt AM Circ Res; 2012 May; 110(10):1279-93. PubMed ID: 22511750 [TBL] [Abstract][Full Text] [Related]
13. Liquiritin attenuates advanced glycation end products-induced endothelial dysfunction via RAGE/NF-κB pathway in human umbilical vein endothelial cells. Zhang X; Song Y; Han X; Feng L; Wang R; Zhang M; Zhu M; Jia X; Hu S Mol Cell Biochem; 2013 Feb; 374(1-2):191-201. PubMed ID: 23229233 [TBL] [Abstract][Full Text] [Related]
14. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta. Matsui T; Nakamura N; Ojima A; Nishino Y; Yamagishi SI Nutr Metab Cardiovasc Dis; 2016 Sep; 26(9):797-807. PubMed ID: 27212619 [TBL] [Abstract][Full Text] [Related]
15. Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress. Dobi A; Rosanaly S; Devin A; Baret P; Meilhac O; Harry GJ; d'Hellencourt CL; Rondeau P Microvasc Res; 2021 Jan; 133():104098. PubMed ID: 33075405 [TBL] [Abstract][Full Text] [Related]
16. Roles of RAGE/ROCK1 Pathway in HMGB1-Induced Early Changes in Barrier Permeability of Human Pulmonary Microvascular Endothelial Cell. Zhao MJ; Jiang HR; Sun JW; Wang ZA; Hu B; Zhu CR; Yin XH; Chen MM; Ma XC; Zhao WD; Luan ZG Front Immunol; 2021; 12():697071. PubMed ID: 34745088 [TBL] [Abstract][Full Text] [Related]
17. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. Sun Z; Li X; Massena S; Kutschera S; Padhan N; Gualandi L; Sundvold-Gjerstad V; Gustafsson K; Choy WW; Zang G; Quach M; Jansson L; Phillipson M; Abid MR; Spurkland A; Claesson-Welsh L J Exp Med; 2012 Jul; 209(7):1363-77. PubMed ID: 22689825 [TBL] [Abstract][Full Text] [Related]
19. Role of myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability in vitro and in vivo. Wu F; Guo X; Xu J; Wang W; Li B; Huang Q; Su L; Xu Q Diab Vasc Dis Res; 2016 Mar; 13(2):137-44. PubMed ID: 26607798 [TBL] [Abstract][Full Text] [Related]
20. [Mechanism of advanced glycation end products-induced hyperpermeability in endothelial cells]. Guo XH; Huang QB; Chen B; Wang SY; Hou FF; Fu N Sheng Li Xue Bao; 2005 Apr; 57(2):205-10. PubMed ID: 15830106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]