These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29490459)

  • 1. Insights into the Structure of Liquid Water from Nuclear Quantum Effects on the Density and Compressibility of Ice Polymorphs.
    Pamuk B; Allen PB; Fernández-Serra MV
    J Phys Chem B; 2018 May; 122(21):5694-5706. PubMed ID: 29490459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization.
    Salim MA; Willow SY; Hirata S
    J Chem Phys; 2016 May; 144(20):204503. PubMed ID: 27250312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of the Volume Isotope Effect in Ice.
    Umemoto K; Sugimura E; de Gironcoli S; Nakajima Y; Hirose K; Ohishi Y; Wentzcovitch RM
    Phys Rev Lett; 2015 Oct; 115(17):173005. PubMed ID: 26551113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous nuclear quantum effects in ice.
    Pamuk B; Soler JM; Ramírez R; Herrero CP; Stephens PW; Allen PB; Fernández-Serra MV
    Phys Rev Lett; 2012 May; 108(19):193003. PubMed ID: 23003032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of intermolecular vibrational motions for ice polymorphs I: Volumetric properties of crystalline and amorphous ices.
    Tanaka H; Yagasaki T; Matsumoto M
    J Chem Phys; 2019 Sep; 151(11):114501. PubMed ID: 31542026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A van der Waals density functional study of ice Ih.
    Hamada I
    J Chem Phys; 2010 Dec; 133(21):214503. PubMed ID: 21142304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting curves of ice polymorphs in the vicinity of the liquid-liquid critical point.
    Piaggi PM; Gartner TE; Car R; Debenedetti PG
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37531247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III.
    Huang Y; Zhu C; Wang L; Cao X; Su Y; Jiang X; Meng S; Zhao J; Zeng XC
    Sci Adv; 2016 Feb; 2(2):e1501010. PubMed ID: 26933681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional.
    Piaggi PM; Panagiotopoulos AZ; Debenedetti PG; Car R
    J Chem Theory Comput; 2021 May; 17(5):3065-3077. PubMed ID: 33835819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melting and crystallization of ice in partially filled nanopores.
    Solveyra EG; de la Llave E; Scherlis DA; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14196-204. PubMed ID: 21863824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structures and hydrogen bond network of high-density and very high-density amorphous ices.
    He C; Lian JS; Jiang Q
    J Phys Chem B; 2005 Oct; 109(42):19893-6. PubMed ID: 16853572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of zero-point energy for crystalline ice phases: A comparison of force fields and density functional theory.
    Rasti S; Meyer J
    J Chem Phys; 2019 Jun; 150(23):234504. PubMed ID: 31228884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.
    Lin C; Yong X; Tse JS; Smith JS; Sinogeikin SV; Kenney-Benson C; Shen G
    Phys Rev Lett; 2017 Sep; 119(13):135701. PubMed ID: 29341714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice I
    Sakti AW; Nishimura Y; Chou CP; Nakai H
    J Phys Chem A; 2018 Jan; 122(1):33-40. PubMed ID: 29227657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope effects in ice Ih: a path-integral simulation.
    Herrero CP; Ramírez R
    J Chem Phys; 2011 Mar; 134(9):094510. PubMed ID: 21384988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the hydrogen bond quantum nature in liquid water and heavy water on stimulated Raman scattering.
    Li F; Li Z; Li S; Fang W; Sun C; Men Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 199():462-464. PubMed ID: 29133131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the line of density anomaly and the lines of melting, crystallization, cavitation, and liquid spinodal in coarse-grained water models.
    Lu J; Chakravarty C; Molinero V
    J Chem Phys; 2016 Jun; 144(23):234507. PubMed ID: 27334179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous Vapor and Ice Nucleation in Water at Negative Pressures: A Classical Density Functional Theory Study.
    Singh Y; Santra M; Singh RS
    J Phys Chem B; 2023 Apr; 127(14):3312-3324. PubMed ID: 36989467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.