These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 29490679)
1. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution. Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679 [TBL] [Abstract][Full Text] [Related]
2. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Dylus DV; Czarkwiani A; StÄngberg J; Ortega-Martinez O; Dupont S; Oliveri P Evodevo; 2016; 7():2. PubMed ID: 26759711 [TBL] [Abstract][Full Text] [Related]
3. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. McCauley BS; Weideman EP; Hinman VF Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847 [TBL] [Abstract][Full Text] [Related]
4. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. Vaughn R; Garnhart N; Garey JR; Thomas WK; Livingston BT Evodevo; 2012 Sep; 3(1):19. PubMed ID: 22938175 [TBL] [Abstract][Full Text] [Related]
5. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae. Delroisse J; Ortega-Martinez O; Dupont S; Mallefet J; Flammang P Mar Genomics; 2015 Oct; 23():109-21. PubMed ID: 26044617 [TBL] [Abstract][Full Text] [Related]
6. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons. Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330 [TBL] [Abstract][Full Text] [Related]
7. Architecture and evolution of the Khor JM; Ettensohn CA Elife; 2022 Feb; 11():. PubMed ID: 35212624 [TBL] [Abstract][Full Text] [Related]
8. EchinoDB: an update to the web-based application for genomic and transcriptomic data on echinoderms. Mittal V; Reid RW; Machado DJ; Mashanov V; Janies DA BMC Genom Data; 2022 Oct; 23(1):75. PubMed ID: 36274129 [TBL] [Abstract][Full Text] [Related]
9. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms. Hinman VF; Cheatle Jarvela AM Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884 [TBL] [Abstract][Full Text] [Related]
10. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Shashikant T; Khor JM; Ettensohn CA Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451 [TBL] [Abstract][Full Text] [Related]
11. The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms. Flores RL; Livingston BT BMC Evol Biol; 2017 Jun; 17(1):125. PubMed ID: 28583083 [TBL] [Abstract][Full Text] [Related]
12. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae. Morino Y; Koga H; Tachibana K; Shoguchi E; Kiyomoto M; Wada H Evol Dev; 2012; 14(5):428-36. PubMed ID: 22947316 [TBL] [Abstract][Full Text] [Related]
13. Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration. Piovani L; Czarkwiani A; Ferrario C; Sugni M; Oliveri P BMC Biol; 2021 Jan; 19(1):9. PubMed ID: 33461552 [TBL] [Abstract][Full Text] [Related]
14. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology. Ben-Tabou de-Leon S; Davidson EH Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):237-246. PubMed ID: 20228891 [TBL] [Abstract][Full Text] [Related]
15. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. Israel JW; Martik ML; Byrne M; Raff EC; Raff RA; McClay DR; Wray GA PLoS Biol; 2016 Mar; 14(3):e1002391. PubMed ID: 26943850 [TBL] [Abstract][Full Text] [Related]
16. Echinoderm development and evolution in the post-genomic era. Cary GA; Hinman VF Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788 [TBL] [Abstract][Full Text] [Related]
17. Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms. Khor JM; Ettensohn CA Elife; 2017 Nov; 6():. PubMed ID: 29154754 [TBL] [Abstract][Full Text] [Related]
18. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Hinman VF; Nguyen AT; Cameron RA; Davidson EH Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011 [TBL] [Abstract][Full Text] [Related]
20. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. Reich A; Dunn C; Akasaka K; Wessel G PLoS One; 2015; 10(3):e0119627. PubMed ID: 25794146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]