BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29490686)

  • 1. Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology.
    Burgio G
    Genome Biol; 2018 Feb; 19(1):27. PubMed ID: 29490686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR: Beyond the Excitement.
    Moustafa K
    J Bioeth Inq; 2024 Mar; 21(1):7-9. PubMed ID: 38261130
    [No Abstract]   [Full Text] [Related]  

  • 3. Emerging Strategies for Genome Editing in the Brain.
    Foss DV; Wilson RC
    Trends Mol Med; 2018 Oct; 24(10):822-824. PubMed ID: 30104136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?
    Zuberi A; Lutz C
    ILAR J; 2016 Dec; 57(2):178-185. PubMed ID: 28053071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success.
    Nguyen TH; Anegon I
    EMBO Mol Med; 2016 May; 8(5):439-41. PubMed ID: 27138565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse Genome Editing Using the CRISPR/Cas System.
    Harms DW; Quadros RM; Seruggia D; Ohtsuka M; Takahashi G; Montoliu L; Gurumurthy CB
    Curr Protoc Hum Genet; 2014 Oct; 83():15.7.1-27. PubMed ID: 25271839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Mammalian In Vivo Enhancers Using Mouse Transgenesis and CRISPR Genome Editing.
    Osterwalder M; Tran S; Hunter RD; Meky EM; von Maydell K; Harrington AN; Godoy J; Novak CS; Plajzer-Frick I; Zhu Y; Akiyama JA; Afzal V; Kvon EZ; Pennacchio LA; Dickel DE; Visel A
    Methods Mol Biol; 2022; 2403():147-186. PubMed ID: 34913122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid in vivo multiplexed editing (RIME) of the adult mouse liver.
    Katsuda T; Cure H; Sussman J; Simeonov KP; Krapp C; Arany Z; Grompe M; Stanger BZ
    Hepatology; 2023 Aug; 78(2):486-502. PubMed ID: 36037289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple and Consecutive Genome Editing Using i-GONAD and Breeding Enrichment Facilitates the Production of Genetically Modified Mice.
    Melo-Silva CR; Knudson CJ; Tang L; Kafle S; Springer LE; Choi J; Snyder CM; Wang Y; Kim SV; Sigal LJ
    Cells; 2023 May; 12(9):. PubMed ID: 37174743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel methods for the generation of genetically engineered animal models.
    Cassidy A; Onal M; Pelletier S
    Bone; 2023 Feb; 167():116612. PubMed ID: 36379415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Transgenesis Efficiency and CRISPR-Associated Tools Through Codon Optimization and Native Intron Addition in
    Han Z; Lo WS; Lightfoot JW; Witte H; Sun S; Sommer RJ
    Genetics; 2020 Dec; 216(4):947-956. PubMed ID: 33060138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR base editing-mediated correction of a tau mutation rescues cognitive decline in a mouse model of tauopathy.
    Gee MS; Kwon E; Song MH; Jeon SH; Kim N; Lee JK; Koo T
    Transl Neurodegener; 2024 Apr; 13(1):21. PubMed ID: 38610033
    [No Abstract]   [Full Text] [Related]  

  • 13. Accelerating functional gene discovery in osteoarthritis.
    Butterfield NC; Curry KF; Steinberg J; Dewhurst H; Komla-Ebri D; Mannan NS; Adoum AT; Leitch VD; Logan JG; Waung JA; Ghirardello E; Southam L; Youlten SE; Wilkinson JM; McAninch EA; Vancollie VE; Kussy F; White JK; Lelliott CJ; Adams DJ; Jacques R; Bianco AC; Boyde A; Zeggini E; Croucher PI; Williams GR; Bassett JHD
    Nat Commun; 2021 Jan; 12(1):467. PubMed ID: 33473114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing of 3' UTR-embedded inhibitory region enables generation of gene knock-up alleles in plants.
    Wang H; Zhang D; Chen M; Meng X; Bai S; Xin P; Yan J; Chu J; Li J; Yu H
    Plant Commun; 2024 Mar; 5(3):100745. PubMed ID: 37946411
    [No Abstract]   [Full Text] [Related]  

  • 15. Approaches for timeline reductions in pathogenesis studies using genetically modified mice.
    Skavicus S; Heaton NS
    Microbiol Spectr; 2023 Sep; 11(5):e0252123. PubMed ID: 37695101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming schistosomes - a crisper approach to transgenesis.
    Kalinna BH
    Trends Parasitol; 2023 Nov; 39(11):896-897. PubMed ID: 37718190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Cancer Dependency Map enables drug mechanism-of-action investigations.
    Vazquez F; Boehm JS
    Mol Syst Biol; 2020 Jul; 16(7):e9757. PubMed ID: 32696566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of evolutionarily conserved functional MYC domains in a tilapia cell line using a vector-based CRISPR/Cas9 system.
    Kim C; Cnaani A; Kültz D
    Sci Rep; 2023 Jul; 13(1):12086. PubMed ID: 37495710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CRISPR/Cas12a-assisted rapid detection platform by biosensing the
    Luan T; Wang L; Zhao J; Luan H; Zhang Y; Wang C; Langford PR; Liu S; Zhang W; Li G
    Front Microbiol; 2022; 13():928307. PubMed ID: 36160205
    [No Abstract]   [Full Text] [Related]  

  • 20. Using CRISPR to understand and manipulate gene regulation.
    Akinci E; Hamilton MC; Khowpinitchai B; Sherwood RI
    Development; 2021 May; 148(9):. PubMed ID: 33913466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.