These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29490686)

  • 21. CRISPR Gene-Editing Models Geared Toward Therapy for Hereditary and Developmental Neurological Disorders.
    Wong PK; Cheah FC; Syafruddin SE; Mohtar MA; Azmi N; Ng PY; Chua EW
    Front Pediatr; 2021; 9():592571. PubMed ID: 33791256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inadvertent nucleotide sequence alterations during mutagenesis: highlighting the vulnerabilities in mouse transgenic technology.
    Ghosh A; Chakrabarti R; Shukla PC
    J Genet Eng Biotechnol; 2021 Feb; 19(1):30. PubMed ID: 33570721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient CRISPR/Cas9 mediated Pooled-sgRNAs assembly accelerates targeting multiple genes related to male sterility in cotton.
    Ramadan M; Alariqi M; Ma Y; Li Y; Liu Z; Zhang R; Jin S; Min L; Zhang X
    Plant Methods; 2021 Feb; 17(1):16. PubMed ID: 33557889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TopoDB: a novel multifunctional management system for laboratory animal colonies.
    Renschen A; Matsunaga A; Oksenberg JR; Santaniello A; Didonna A
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 33206961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Find and fuse: Unsolved mysteries in sperm-egg recognition.
    Bianchi E; Wright GJ
    PLoS Biol; 2020 Nov; 18(11):e3000953. PubMed ID: 33186358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research.
    Hu M; Cherkaoui I; Misra S; Rutter GA
    Front Endocrinol (Lausanne); 2020; 11():576632. PubMed ID: 33162936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell Fate Determination of Lymphatic Endothelial Cells.
    Lee YJ
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32640757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Generated Animal Models of Duchenne Muscular Dystrophy.
    Lim KRQ; Nguyen Q; Dzierlega K; Huang Y; Yokota T
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32213923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockout Mouse Models for Peroxiredoxins.
    Lee YJ
    Antioxidants (Basel); 2020 Feb; 9(2):. PubMed ID: 32098329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generating mouse models for biomedical research: technological advances.
    Gurumurthy CB; Lloyd KCK
    Dis Model Mech; 2019 Jan; 12(1):. PubMed ID: 30626588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension.
    Gonzalez-Vicente A; Saez F; Monzon CM; Asirwatham J; Garvin JL
    Physiol Rev; 2019 Jan; 99(1):235-309. PubMed ID: 30354966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UPA-seq: prediction of functional lncRNAs using differential sensitivity to UV crosslinking.
    Komatsu T; Yokoi S; Fujii K; Mito M; Kimura Y; Iwasaki S; Nakagawa S
    RNA; 2018 Dec; 24(12):1785-1802. PubMed ID: 30232101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. i-GONAD (improved genome-editing via oviductal nucleic acids delivery), a convenient in vivo tool to produce genome-edited rats.
    Takabayashi S; Aoshima T; Kabashima K; Aoto K; Ohtsuka M; Sato M
    Sci Rep; 2018 Aug; 8(1):12059. PubMed ID: 30104681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correction to: Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology.
    Burgio G
    Genome Biol; 2018 Mar; 19(1):41. PubMed ID: 29580259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology.
    Burgio G
    Genome Biol; 2018 Feb; 19(1):27. PubMed ID: 29490686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
    Luo JJ; Bian WP; Liu Y; Huang HY; Yin Q; Yang XJ; Pei DS
    FASEB J; 2018 Sep; 32(9):5132-5142. PubMed ID: 29812974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing.
    Manghwar H; Lindsey K; Zhang X; Jin S
    Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Recent progresses in CRISPR genome editing in plants].
    Li H; Xie K
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1700-1711. PubMed ID: 29082718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.