These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29491204)

  • 1. Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure.
    Takiguchi K; Hayashi M; Kazayama Y; Toyota T; Harada Y; Nishiyama M
    Biol Pharm Bull; 2018; 41(3):288-293. PubMed ID: 29491204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.
    Hayashi M; Nishiyama M; Kazayama Y; Toyota T; Harada Y; Takiguchi K
    Langmuir; 2016 Apr; 32(15):3794-802. PubMed ID: 27023063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule depolymerization at high pressure.
    Nishiyama M; Shimoda Y; Hasumi M; Kimura Y; Terazima M
    Ann N Y Acad Sci; 2010 Feb; 1189():86-90. PubMed ID: 20233372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA cytoskeleton for stabilizing artificial cells.
    Kurokawa C; Fujiwara K; Morita M; Kawamata I; Kawagishi Y; Sakai A; Murayama Y; Nomura SM; Murata S; Takinoue M; Yanagisawa M
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7228-7233. PubMed ID: 28652345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological transformation of liposomes caused by assembly of encapsulated tubulin and determination of shape by microtubule-associated proteins (MAPs).
    Kaneko T; Itoh TJ; Hotani H
    J Mol Biol; 1998 Dec; 284(5):1671-81. PubMed ID: 9878378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dramatic morphological changes in liposomes induced by peptide nanofibers reversibly polymerized and depolymerized by the photoisomerization of spiropyran.
    Liang Y; Ogawa S; Inaba H; Matsuura K
    Front Mol Biosci; 2023; 10():1137885. PubMed ID: 37065452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant lipid vesicles filled with a gel: shape instability induced by osmotic shrinkage.
    Viallat A; Dalous J; Abkarian M
    Biophys J; 2004 Apr; 86(4):2179-87. PubMed ID: 15041658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of giant unilamellar liposomes containing biomacromolecules at physiological intracellular concentrations using hypertonic conditions.
    Fujiwara K; Yanagisawa M
    ACS Synth Biol; 2014 Dec; 3(12):870-4. PubMed ID: 24932801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and topological transformation of membrane vesicles.
    Nomura F; Honda M; Takeda S; Inaba T; Takiguchi K; Itoh TJ; Ishijima A; Umeda T; Hotani H
    J Biol Phys; 2002 Jun; 28(2):225-35. PubMed ID: 23345771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the piezo-tolerance of cultured deep-sea eel cells on survival rates, cell proliferation, and cytoskeletal structures.
    Koyama S; Kobayashi H; Inoue A; Miwa T; Aizawa M
    Extremophiles; 2005 Dec; 9(6):449-60. PubMed ID: 16082498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sedimentation velocity analyses of the effect of hydrostatic pressure on the 30 S microtubule protein oligomer.
    Marcum JM; Borisy GG
    J Biol Chem; 1978 Apr; 253(8):2852-7. PubMed ID: 564909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-pressure microscopy for tracking dynamic properties of molecular machines.
    Nishiyama M
    Biophys Chem; 2017 Dec; 231():71-78. PubMed ID: 28433265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical analyses of morphological and topological transformation of liposomes.
    Hotani H; Inaba T; Nomura F; Takeda S; Takiguchi K; Itoh TJ; Umeda T; Ishijima A
    Biosystems; 2003 Sep; 71(1-2):93-100. PubMed ID: 14568210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal systems to study membrane-cytoskeleton interactions.
    Vogel SK; Schwille P
    Curr Opin Biotechnol; 2012 Oct; 23(5):758-65. PubMed ID: 22503237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic liposome-microtubule complexes: pathways to the formation of two-state lipid-protein nanotubes with open or closed ends.
    Raviv U; Needleman DJ; Li Y; Miller HP; Wilson L; Safinya CR
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11167-72. PubMed ID: 16055561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review.
    Robinson T
    Adv Biosyst; 2019 Jun; 3(6):e1800318. PubMed ID: 32648705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin, and cytokeratin in mammalian tissue cells.
    Crenshaw HC; Allen JA; Skeen V; Harris A; Salmon ED
    Exp Cell Res; 1996 Sep; 227(2):285-97. PubMed ID: 8831567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High hydrostatic pressure effects in vivo: changes in cell morphology, microtubule assembly, and actin organization.
    Bourns B; Franklin S; Cassimeris L; Salmon ED
    Cell Motil Cytoskeleton; 1988; 10(3):380-90. PubMed ID: 3052872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles.
    Kazayama Y; Teshima T; Osaki T; Takeuchi S; Toyota T
    Anal Chem; 2016 Jan; 88(2):1111-6. PubMed ID: 26691855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic-engine-driven liposomes in microfluidic channels.
    Shoji K; Kawano R
    Lab Chip; 2019 Oct; 19(20):3472-3480. PubMed ID: 31512693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.