These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29491205)

  • 1. Bio-inspired Multiblock Molecules for Membrane Functionalization.
    Muraoka T
    Biol Pharm Bull; 2018; 41(3):294-302. PubMed ID: 29491205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Transmembrane Ion Channels Formed by Multiblock Amphiphiles.
    Sato K; Muraoka T; Kinbara K
    Acc Chem Res; 2021 Oct; 54(19):3700-3709. PubMed ID: 34496564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mimicking multipass transmembrane proteins: synthesis, assembly and folding of alternating amphiphilic multiblock molecules in liposomal membranes.
    Muraoka T; Shima T; Hamada T; Morita M; Takagi M; Kinbara K
    Chem Commun (Camb); 2011 Jan; 47(1):194-6. PubMed ID: 20848036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion permeation by a folded multiblock amphiphilic oligomer achieved by hierarchical construction of self-assembled nanopores.
    Muraoka T; Shima T; Hamada T; Morita M; Takagi M; Tabata KV; Noji H; Kinbara K
    J Am Chem Soc; 2012 Dec; 134(48):19788-94. PubMed ID: 23145887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A synthetic ion channel with anisotropic ligand response.
    Muraoka T; Noguchi D; Kasai RS; Sato K; Sasaki R; Tabata KV; Ekimoto T; Ikeguchi M; Kamagata K; Hoshino N; Noji H; Akutagawa T; Ichimura K; Kinbara K
    Nat Commun; 2020 Jun; 11(1):2924. PubMed ID: 32522996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechano-Sensitive Synthetic Ion Channels.
    Muraoka T; Umetsu K; Tabata KV; Hamada T; Noji H; Yamashita T; Kinbara K
    J Am Chem Soc; 2017 Dec; 139(49):18016-18023. PubMed ID: 29077401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Mechanosensitive Potassium Channel Formed by Fluorinated Amphiphilic Cyclophane.
    Sato K; Sasaki R; Matsuda R; Nakagawa M; Ekimoto T; Yamane T; Ikeguchi M; Tabata KV; Noji H; Kinbara K
    J Am Chem Soc; 2022 Jul; 144(26):11802-11809. PubMed ID: 35727684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.
    De Marothy MT; Elofsson A
    Protein Sci; 2015 Jul; 24(7):1057-74. PubMed ID: 25970811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally triggered self-assembly of folded proteins into vesicles.
    Park WM; Champion JA
    J Am Chem Soc; 2014 Dec; 136(52):17906-9. PubMed ID: 25495148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extramembrane control of ion channel peptide assemblies, using alamethicin as an example.
    Futaki S; Noshiro D; Kiwada T; Asami K
    Acc Chem Res; 2013 Dec; 46(12):2924-33. PubMed ID: 23680081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.
    Si W; Xin P; Li ZT; Hou JL
    Acc Chem Res; 2015 Jun; 48(6):1612-9. PubMed ID: 26017272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible ion transportation switch by a ligand-gated synthetic supramolecular ion channel.
    Muraoka T; Endo T; Tabata KV; Noji H; Nagatoishi S; Tsumoto K; Li R; Kinbara K
    J Am Chem Soc; 2014 Nov; 136(44):15584-95. PubMed ID: 25299449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic hybrid materials for constitutional self-instructed membranes.
    Cazacu A; Legrand YM; Pasc A; Nasr G; Van der Lee A; Mahon E; Barboiu M
    Proc Natl Acad Sci U S A; 2009 May; 106(20):8117-22. PubMed ID: 19416909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Artificial models of transport proteins in membrane].
    Kobuke Y
    Nihon Rinsho; 1996 Mar; 54(3):737-43. PubMed ID: 8904231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled H-Bonding Superstructures for Alkali Cation and Proton Transport.
    Licsandru E; Andrei IM; van der Lee A; Barboiu M
    Front Chem; 2021; 9():678962. PubMed ID: 34026736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From natural to bioassisted and biomimetic artificial water channel systems.
    Barboiu M; Gilles A
    Acc Chem Res; 2013 Dec; 46(12):2814-23. PubMed ID: 23566356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and functional dynamics characterization of the ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domain by combining molecular dynamics with excited normal modes.
    Araujo GC; Silva RH; Scott LP; Araujo AS; Souza FP; de Oliveira RJ
    J Mol Model; 2016 Dec; 22(12):286. PubMed ID: 27817112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.
    Wang C; Wang Z; Zhang X
    Acc Chem Res; 2012 Apr; 45(4):608-18. PubMed ID: 22242811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.