These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 29491206)

  • 21. Regulation of channel function due to physical energetic coupling with a lipid bilayer.
    Ashrafuzzaman M; Tseng CY; Tuszynski JA
    Biochem Biophys Res Commun; 2014 Mar; 445(2):463-8. PubMed ID: 24530910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amphiphile regulation of ion channel function by changes in the bilayer spring constant.
    Lundbaek JA; Koeppe RE; Andersen OS
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15427-30. PubMed ID: 20713738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer Formation.
    Venkatesan GA; Lee J; Farimani AB; Heiranian M; Collier CP; Aluru NR; Sarles SA
    Langmuir; 2015 Dec; 31(47):12883-93. PubMed ID: 26556227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatable lipid bilayer formation and ion channel measurement using sessile droplets.
    Poulos JL; Portonovo SA; Bang H; Schmidt JJ
    J Phys Condens Matter; 2010 Nov; 22(45):454105. PubMed ID: 21339593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Droplet split-and-contact method for high-throughput transmembrane electrical recording.
    Tsuji Y; Kawano R; Osaki T; Kamiya K; Miki N; Takeuchi S
    Anal Chem; 2013 Nov; 85(22):10913-9. PubMed ID: 24134641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function.
    Foreman-Ortiz IU; Liang D; Laudadio ED; Calderin JD; Wu M; Keshri P; Zhang X; Schwartz MP; Hamers RJ; Rotello VM; Murphy CJ; Cui Q; Pedersen JA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27854-27861. PubMed ID: 33106430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography.
    Suzuki H; Le Pioufle B; Takeuchi S
    Biomed Microdevices; 2009 Feb; 11(1):17-22. PubMed ID: 18584329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Actin and amphiphilic polymers influence on channel formation by Syringomycin E in lipid bilayers.
    Bessonov AN; Schagina LV; Takemoto JY; Gurnev PA; Kuznetsova IM; Turoverov KK; Malev VV
    Eur Biophys J; 2006 May; 35(5):382-92. PubMed ID: 16470378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins.
    Venturoli M; Smit B; Sperotto MM
    Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical and Chemical Interplay Between the Membrane and a Prototypical Potassium Channel Reconstituted on a Lipid Bilayer Platform.
    Iwamoto M; Oiki S
    Front Mol Neurosci; 2021; 14():634121. PubMed ID: 33716666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of membrane lipids on ion channel structure and function.
    Tillman TS; Cascio M
    Cell Biochem Biophys; 2003; 38(2):161-90. PubMed ID: 12777713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Air-stable droplet interface bilayers on oil-infused surfaces.
    Boreyko JB; Polizos G; Datskos PG; Sarles SA; Collier CP
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7588-93. PubMed ID: 24821774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking.
    Kiessling V; Crane JM; Tamm LK
    Biophys J; 2006 Nov; 91(9):3313-26. PubMed ID: 16905614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Storable droplet interface lipid bilayers for cell-free ion channel studies.
    Jung SH; Choi S; Kim YR; Jeon TJ
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):241-6. PubMed ID: 21909672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Masking apertures enabling automation and solution exchange in sessile droplet lipid bilayers.
    Portonovo SA; Schmidt J
    Biomed Microdevices; 2012 Feb; 14(1):187-91. PubMed ID: 21987003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tethered bilayer lipid membranes self-assembled on mercury electrodes.
    Moncelli MR; Becucci L; Schiller SM
    Bioelectrochemistry; 2004 Jun; 63(1-2):161-7. PubMed ID: 15110267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Biosens Bioelectron; 2007 Jan; 22(6):1111-5. PubMed ID: 16730973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid microfluidic perfusion enabling kinetic studies of lipid ion channels in a bilayer lipid membrane chip.
    Shao C; Sun B; Colombini M; Devoe DL
    Ann Biomed Eng; 2011 Aug; 39(8):2242-51. PubMed ID: 21556947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.