These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 29491377)

  • 1. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor.
    Crow M; Paul A; Ballouz S; Huang ZJ; Gillis J
    Nat Commun; 2018 Feb; 9(1):884. PubMed ID: 29491377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving replicability in single-cell RNA-Seq cell type discovery with Dune.
    Roux de Bézieux H; Street K; Fischer S; Van den Berge K; Chance R; Risso D; Gillis J; Ngai J; Purdom E; Dudoit S
    BMC Bioinformatics; 2024 May; 25(1):198. PubMed ID: 38789920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data.
    Diaz-Mejia JJ; Meng EC; Pico AR; MacParland SA; Ketela T; Pugh TJ; Bader GD; Morris JH
    F1000Res; 2019; 8():. PubMed ID: 31508207
    [No Abstract]   [Full Text] [Related]  

  • 6. Exploiting single-cell expression to characterize co-expression replicability.
    Crow M; Paul A; Ballouz S; Huang ZJ; Gillis J
    Genome Biol; 2016 May; 17():101. PubMed ID: 27165153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated single cell data analysis reveals cell specific networks and novel coactivation markers.
    Ghazanfar S; Bisogni AJ; Ormerod JT; Lin DM; Yang JY
    BMC Syst Biol; 2016 Dec; 10(Suppl 5):127. PubMed ID: 28105940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Missing data and technical variability in single-cell RNA-sequencing experiments.
    Hicks SC; Townes FW; Teng M; Irizarry RA
    Biostatistics; 2018 Oct; 19(4):562-578. PubMed ID: 29121214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JingleBells: A Repository of Immune-Related Single-Cell RNA-Sequencing Datasets.
    Ner-Gaon H; Melchior A; Golan N; Ben-Haim Y; Shay T
    J Immunol; 2017 May; 198(9):3375-3379. PubMed ID: 28416714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of high-throughput single-cell RNA sequencing data processing pipelines.
    Gao M; Ling M; Tang X; Wang S; Xiao X; Qiao Y; Yang W; Yu R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probabilistic gene expression barcode for annotation of cell types from single-cell RNA-seq data.
    Grabski IN; Irizarry RA
    Biostatistics; 2022 Oct; 23(4):1150-1164. PubMed ID: 35770795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell RNA Sequencing for Studying Human Cancers.
    Aran D
    Annu Rev Biomed Data Sci; 2023 Aug; 6():1-22. PubMed ID: 37040737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.
    Guo M; Wang H; Potter SS; Whitsett JA; Xu Y
    PLoS Comput Biol; 2015 Nov; 11(11):e1004575. PubMed ID: 26600239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell analysis via manifold fitting: A framework for RNA clustering and beyond.
    Yao Z; Li B; Lu Y; Yau ST
    Proc Natl Acad Sci U S A; 2024 Sep; 121(37):e2400002121. PubMed ID: 39226348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.
    Wang Z; Jin S; Liu G; Zhang X; Wang N; Wu D; Hu Y; Zhang C; Jiang Q; Xu L; Wang Y
    BMC Bioinformatics; 2017 May; 18(1):270. PubMed ID: 28535748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. XgCPred: Cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data.
    Abu-Doleh A; Al Fahoum A
    Comput Biol Med; 2024 Oct; 181():109066. PubMed ID: 39180857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of single-cell RNA sequencing data based on autoencoders.
    Tangherloni A; Ricciuti F; Besozzi D; Liò P; Cvejic A
    BMC Bioinformatics; 2021 Jun; 22(1):309. PubMed ID: 34103004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.