BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29491418)

  • 1. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.
    Jing F; Zhao L; Yandeau-Nelson MD; Nikolau BJ
    Nat Commun; 2018 Feb; 9(1):860. PubMed ID: 29491418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase.
    Jing F; Yandeau-Nelson MD; Nikolau BJ
    Biochem J; 2018 Dec; 475(23):3861-3873. PubMed ID: 30409825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression.
    Ziesack M; Rollins N; Shah A; Dusel B; Webster G; Silver PA; Way JC
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.
    Jing F; Cantu DC; Tvaruzkova J; Chipman JP; Nikolau BJ; Yandeau-Nelson MD; Reilly PJ
    BMC Biochem; 2011 Aug; 12():44. PubMed ID: 21831316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Active C
    Hernández Lozada NJ; Lai RY; Simmons TR; Thomas KA; Chowdhury R; Maranas CD; Pfleger BF
    ACS Synth Biol; 2018 Sep; 7(9):2205-2215. PubMed ID: 30064208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Insight into Acyl-ACP Thioesterase toward Substrate Specificity Design.
    Feng Y; Wang Y; Liu J; Liu Y; Cao X; Xue S
    ACS Chem Biol; 2017 Nov; 12(11):2830-2836. PubMed ID: 28991437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.
    Aznar-Moreno JA; Venegas-Calerón M; Martínez-Force E; Garcés R; Salas JJ
    Planta; 2016 Aug; 244(2):479-90. PubMed ID: 27095109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.
    Jones A; Davies HM; Voelker TA
    Plant Cell; 1995 Mar; 7(3):359-71. PubMed ID: 7734968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel acyl-ACP thioesterase gene ClFATB1 from Cinnamomum longepaniculatum.
    Lin N; Ai TB; Gao JH; Fan LH; Wang SH; Chen F
    Biochemistry (Mosc); 2013 Nov; 78(11):1298-303. PubMed ID: 24460945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.
    Feng Y; Zhang Y; Wang Y; Liu J; Liu Y; Cao X; Xue S
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3173-3182. PubMed ID: 29470618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.
    Zhang X; Li M; Agrawal A; San KY
    Metab Eng; 2011 Nov; 13(6):713-22. PubMed ID: 22001432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering.
    Yuan L; Voelker TA; Hawkins DJ
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10639-43. PubMed ID: 7479856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases.
    Leonard JM; Knapp SJ; Slabaugh MB
    Plant J; 1998 Mar; 13(5):621-8. PubMed ID: 9681004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.
    Kim HJ; Silva JE; Vu HS; Mockaitis K; Nam JW; Cahoon EB
    J Exp Bot; 2015 Jul; 66(14):4251-65. PubMed ID: 25969557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana.
    Dehesh K; Jones A; Knutzon DS; Voelker TA
    Plant J; 1996 Feb; 9(2):167-72. PubMed ID: 8820604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis.
    Tjellström H; Strawsine M; Silva J; Cahoon EB; Ohlrogge JB
    FEBS Lett; 2013 Apr; 587(7):936-42. PubMed ID: 23454211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.
    Kim HJ; Silva JE; Iskandarov U; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB
    Plant J; 2015 Dec; 84(5):1021-33. PubMed ID: 26505880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants.
    Kalinger RS; Rowland O
    BMC Plant Biol; 2023 Jan; 23(1):1. PubMed ID: 36588156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.
    Dehesh K; Edwards P; Hayes T; Cranmer AM; Fillatti J
    Plant Physiol; 1996 Jan; 110(1):203-10. PubMed ID: 8587983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cuphea wrightii thioesterases have unexpected broad specificities on saturated fatty acids.
    Leonard JM; Slabaugh MB; Knapp SJ
    Plant Mol Biol; 1997 Jul; 34(4):669-79. PubMed ID: 9247548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.