These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29491479)

  • 1. Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany.
    Bose A; Dürr T; Klenke RA; Henle K
    Sci Rep; 2018 Feb; 8(1):3777. PubMed ID: 29491479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting strike susceptibility and collision patterns of the common buzzard at wind turbine structures in the federal state of Brandenburg, Germany.
    Bose A; Dürr T; Klenke RA; Henle K
    PLoS One; 2020; 15(1):e0227698. PubMed ID: 31978066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment.
    Thaxter CB; Buchanan GM; Carr J; Butchart SHM; Newbold T; Green RE; Tobias JA; Foden WB; O'Brien S; Pearce-Higgins JW
    Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28904135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of bird and bat mortality at wind turbines in the Northeastern United States.
    Choi DY; Wittig TW; Kluever BM
    PLoS One; 2020; 15(8):e0238034. PubMed ID: 32857780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models.
    Korner-Nievergelt F; Brinkmann R; Niermann I; Behr O
    PLoS One; 2013; 8(7):e67997. PubMed ID: 23844144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Habitat use of bats in relation to wind turbines revealed by GPS tracking.
    Roeleke M; Blohm T; Kramer-Schadt S; Yovel Y; Voigt CC
    Sci Rep; 2016 Jul; 6():28961. PubMed ID: 27373219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.
    Minderman J; Pendlebury CJ; Pearce-Higgins JW; Park KJ
    PLoS One; 2012; 7(7):e41177. PubMed ID: 22859969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of birds and mammals to long-established wind farms in India.
    Kumara HN; Babu S; Rao GB; Mahato S; Bhattacharya M; Rao NVR; Tamiliniyan D; Parengal H; Deepak D; Balakrishnan A; Bilaskar M
    Sci Rep; 2022 Jan; 12(1):1339. PubMed ID: 35079039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimizing collision risk between migrating raptors and marine wind farms: development of a spatial planning tool.
    Baisner AJ; Andersen JL; Findsen A; Yde Granath SW; Madsen KO; Desholm M
    Environ Manage; 2010 Nov; 46(5):801-8. PubMed ID: 20711780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.
    Erickson WP; Wolfe MM; Bay KJ; Johnson DH; Gehring JL
    PLoS One; 2014; 9(9):e107491. PubMed ID: 25222738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collision effects of wind-power generators and other obstacles on birds.
    Drewitt AL; Langston RH
    Ann N Y Acad Sci; 2008; 1134():233-66. PubMed ID: 18566097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in flight paths of large-bodied birds after construction of large terrestrial wind turbines.
    Therkildsen OR; Balsby TJS; Kjeldsen JP; Nielsen RD; Bladt J; Fox AD
    J Environ Manage; 2021 Jul; 290():112647. PubMed ID: 33901827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing wind turbine avoidance behaviour of a migrating soaring bird.
    Santos CD; Ramesh H; Ferraz R; Franco AMA; Wikelski M
    Sci Rep; 2022 Apr; 12(1):6441. PubMed ID: 35440704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of wind-energy facilities on breeding grassland bird distributions.
    Shaffer JA; Buhl DA
    Conserv Biol; 2016 Feb; 30(1):59-71. PubMed ID: 26213098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind turbines cause functional habitat loss for migratory soaring birds.
    Marques AT; Santos CD; Hanssen F; Muñoz AR; Onrubia A; Wikelski M; Moreira F; Palmeirim JM; Silva JP
    J Anim Ecol; 2020 Jan; 89(1):93-103. PubMed ID: 30762229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A standardized protocol for assessing the performance of automatic detection systems used in onshore wind power plants to reduce avian mortality.
    Ballester C; Dupont SM; Corbeau A; Chambert T; Duriez O; Besnard A
    J Environ Manage; 2024 Mar; 354():120437. PubMed ID: 38402787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps.
    Cook ASCP; Humphreys EM; Bennet F; Masden EA; Burton NHK
    Mar Environ Res; 2018 Sep; 140():278-288. PubMed ID: 29980294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing vulnerability of marine bird populations to offshore wind farms.
    Furness RW; Wade HM; Masden EA
    J Environ Manage; 2013 Apr; 119():56-66. PubMed ID: 23454414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of development of wind energy and associated changes in land use on bird densities in upland areas.
    Fernández-Bellon D; Wilson MW; Irwin S; O'Halloran J
    Conserv Biol; 2019 Apr; 33(2):413-422. PubMed ID: 30346052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development.
    Beston JA; Diffendorfer JE; Loss SR; Johnson DH
    PLoS One; 2016; 11(3):e0150813. PubMed ID: 26963254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.