These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 29491830)
1. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off. Grazi L; Crea S; Parri A; Molino Lova R; Micera S; Vitiello N Front Neurosci; 2018; 12():71. PubMed ID: 29491830 [TBL] [Abstract][Full Text] [Related]
2. Gastrocnemius myoelectric control of a robotic hip exoskeleton. Grazi L; Crea S; Parri A; Yan T; Cortese M; Giovacchini F; Cempini M; Pasquini G; Micera S; Vitiello N Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3881-4. PubMed ID: 26737141 [TBL] [Abstract][Full Text] [Related]
3. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton. Young AJ; Gannon H; Ferris DP Front Bioeng Biotechnol; 2017; 5():37. PubMed ID: 28713810 [TBL] [Abstract][Full Text] [Related]
4. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
5. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output. George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646 [TBL] [Abstract][Full Text] [Related]
6. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton. Young AJ; Foss J; Gannon H; Ferris DP Front Bioeng Biotechnol; 2017; 5():4. PubMed ID: 28337434 [TBL] [Abstract][Full Text] [Related]
7. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control. Koller JR; Remy CD; Ferris DP J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451 [TBL] [Abstract][Full Text] [Related]
8. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of controllers for augmentative hip exoskeletons and their effects on metabolic cost of walking: explicit versus implicit synchronization. Manzoori AR; Malatesta D; Primavesi J; Ijspeert A; Bouri M Front Bioeng Biotechnol; 2024; 12():1324587. PubMed ID: 38532879 [No Abstract] [Full Text] [Related]
10. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
11. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns]. Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968 [TBL] [Abstract][Full Text] [Related]
12. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking. Lenzi T; Carrozza MC; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):938-48. PubMed ID: 23529105 [TBL] [Abstract][Full Text] [Related]
14. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion. Jackson RW; Collins SH IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120 [TBL] [Abstract][Full Text] [Related]
15. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations. Mosconi D; Moreno Y; Siqueira A Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262 [TBL] [Abstract][Full Text] [Related]
16. Neuromechanical Adaptation to Walking With Electromechanical Ankle Exoskeletons Under Proportional Myoelectric Control. Hybart RL; Ferris DP IEEE Open J Eng Med Biol; 2023; 4():119-128. PubMed ID: 38274783 [TBL] [Abstract][Full Text] [Related]
17. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. Kao PC; Lewis CL; Ferris DP J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331 [TBL] [Abstract][Full Text] [Related]
18. Processing Surface EMG Signals for Exoskeleton Motion Control. Yin G; Zhang X; Chen D; Li H; Chen J; Chen C; Lemos S Front Neurorobot; 2020; 14():40. PubMed ID: 32765250 [TBL] [Abstract][Full Text] [Related]
19. Effect of timing of hip extension assistance during loaded walking with a soft exosuit. Ding Y; Panizzolo FA; Siviy C; Malcolm P; Galiana I; Holt KG; Walsh CJ J Neuroeng Rehabil; 2016 Oct; 13(1):87. PubMed ID: 27716439 [TBL] [Abstract][Full Text] [Related]
20. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]