These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29491959)

  • 41. Accuracy and precision of visual and auditory stimulus presentation in virtual reality in Python 2 and 3 environments for human behavior research.
    Tachibana R; Matsumiya K
    Behav Res Methods; 2022 Apr; 54(2):729-751. PubMed ID: 34346042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virtual reality as a tool for environmental conservation and fundraising.
    Nelson KM; Anggraini E; Schlüter A
    PLoS One; 2020; 15(4):e0223631. PubMed ID: 32251442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcript-based computer animation of movement: evaluating a new tool for nonverbal behavior research.
    Bente G; Petersen A; Krämer NC; de Ruiter JP
    Behav Res Methods Instrum Comput; 2001 Aug; 33(3):303-10. PubMed ID: 11591061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Behavioral and endocrine responses to noninteractive live and video conspecifics in males of the Siamese fighting fish.
    Alex D; Cardoso SD; Ramos A; Gonçalves D
    Curr Zool; 2023 Oct; 69(5):568-577. PubMed ID: 37637314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [What do virtual reality tools bring to child and adolescent psychiatry?].
    Bioulac S; de Sevin E; Sagaspe P; Claret A; Philip P; Micoulaud-Franchi JA; Bouvard MP
    Encephale; 2018 Jun; 44(3):280-285. PubMed ID: 28870688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Study of Immersive Physiology Courses Based on Intelligent Network through Virtual Reality Technology in the Context of 5G.
    Ma L; Zhang W; Lv M; Li J
    Comput Intell Neurosci; 2022; 2022():6234883. PubMed ID: 35607477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methodological and institutional considerations for the use of 360-degree video and pet animals in human subject research: An experimental case study from the United States.
    Swobodzinski M; Maruyama M; Mankowski E
    Behav Res Methods; 2021 Jun; 53(3):977-992. PubMed ID: 32918168
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Untapped Potential of Virtual Reality in Rehabilitation of Balance and Gait in Neurological Disorders.
    Keshner EA; Lamontagne A
    Front Virtual Real; 2021 Mar; 2():. PubMed ID: 33860281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Talking to Cows: Reactions to Different Auditory Stimuli During Gentle Human-Animal Interactions.
    Lange A; Bauer L; Futschik A; Waiblinger S; Lürzel S
    Front Psychol; 2020; 11():579346. PubMed ID: 33178082
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward a strengths-based model for designing virtual reality learning experiences for autistic users.
    Schmidt M; Newbutt N; Lee M; Lu J; Francois MS; Antonenko PD; Glaser N
    Autism; 2024 Jul; 28(7):1809-1827. PubMed ID: 37937531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low cost audiovisual playback and recording triggered by radio frequency identification using Raspberry Pi.
    Lendvai ÁZ; Akçay Ç; Weiss T; Haussmann MF; Moore IT; Bonier F
    PeerJ; 2015; 3():e877. PubMed ID: 25870771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Creating state of the art, next-generation Virtual Reality exposure therapies for anxiety disorders using consumer hardware platforms: design considerations and future directions.
    Lindner P; Miloff A; Hamilton W; Reuterskiöld L; Andersson G; Powers MB; Carlbring P
    Cogn Behav Ther; 2017 Sep; 46(5):404-420. PubMed ID: 28270059
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanics of the peafowl's crest reveals frequencies tuned to social displays.
    Kane SA; Van Beveren D; Dakin R
    PLoS One; 2018; 13(11):e0207247. PubMed ID: 30485316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Virtual Reality for Vision Science.
    Hibbard PB
    Curr Top Behav Neurosci; 2023; 65():131-159. PubMed ID: 36723780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Virtual reality therapy in anxiety disorders].
    Mitrousia V; Giotakos O
    Psychiatriki; 2016; 27(4):276-286. PubMed ID: 28114091
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Introductory tail-flick of the Jacky dragon visual display: signal efficacy depends upon duration.
    Peters RA; Evans CS
    J Exp Biol; 2003 Dec; 206(Pt 23):4293-307. PubMed ID: 14581599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visual and auditory stimuli associated with swallowing activate mirror neurons: a magnetoencephalography study.
    Ushioda T; Watanabe Y; Sanjo Y; Yamane GY; Abe S; Tsuji Y; Ishiyama A
    Dysphagia; 2012 Dec; 27(4):504-13. PubMed ID: 22395851
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.