These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 29492372)
1. The use of Fan C; Xu X; Song L; Guan W; Li J; Liu B; Shi P; Zhang W 3 Biotech; 2018 Mar; 8(3):153. PubMed ID: 29492372 [TBL] [Abstract][Full Text] [Related]
2. The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1. Xu X; Li J; Shi P; Ji W; Liu B; Zhang Y; Yao B; Fan Y; Zhang W Sci Rep; 2016 Aug; 6():31108. PubMed ID: 27506519 [TBL] [Abstract][Full Text] [Related]
3. A Novel CreA-Mediated Regulation Mechanism of Cellulase Expression in the Thermophilic Fungus Xu X; Fan C; Song L; Li J; Chen Y; Zhang Y; Liu B; Zhang W Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357701 [TBL] [Abstract][Full Text] [Related]
4. Application of T-DNA insertional mutagenesis for improving cellulase production in the filamentous fungus Trichoderma reesei. Zhong Y; Wang X; Yu H; Liang S; Wang T Bioresour Technol; 2012 Apr; 110():572-7. PubMed ID: 22365717 [TBL] [Abstract][Full Text] [Related]
5. Cellulase hyper-production by Li C; Lin F; Zhou L; Qin L; Li B; Zhou Z; Jin M; Chen Z Biotechnol Biofuels; 2017; 10():228. PubMed ID: 29034003 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9-mediated genome editing directed by a 5S rRNA-tRNA Fan C; Zhang W; Su X; Ji W; Luo H; Zhang Y; Liu B; Yao B; Huang H; Xu X Biotechnol Biofuels; 2021 Oct; 14(1):206. PubMed ID: 34688310 [TBL] [Abstract][Full Text] [Related]
7. Transcription Factor Atf1 Regulates Expression of Cellulase and Xylanase Genes during Solid-State Fermentation of Ascomycetes. Zhao S; Liao XZ; Wang JX; Ning YN; Li CX; Liao LS; Liu Q; Jiang Q; Gu LS; Fu LH; Yan YS; Xiong YR; He QP; Su LH; Duan CJ; Luo XM; Feng JX Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604764 [TBL] [Abstract][Full Text] [Related]
8. Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Esher SK; Granek JA; Alspaugh JA Fungal Genet Biol; 2015 Sep; 82():9-21. PubMed ID: 26112692 [TBL] [Abstract][Full Text] [Related]
9. Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression. Zhao S; Yan YS; He QP; Yang L; Yin X; Li CX; Mao LC; Liao LS; Huang JQ; Xie SB; Nong QD; Zhang Z; Jing L; Xiong YR; Duan CJ; Liu JL; Feng JX Biotechnol Biofuels; 2016; 9():203. PubMed ID: 27688806 [TBL] [Abstract][Full Text] [Related]
10. Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. Wang H; Zhai L; Geng A J Biosci Bioeng; 2020 Feb; 129(2):242-249. PubMed ID: 31561850 [TBL] [Abstract][Full Text] [Related]
11. New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. Jiang X; Geng A; He N; Li Q J Biosci Bioeng; 2011 Feb; 111(2):121-7. PubMed ID: 21071269 [TBL] [Abstract][Full Text] [Related]
12. A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus. Kunitake E; Tani S; Sumitani J; Kawaguchi T Appl Microbiol Biotechnol; 2013 Mar; 97(5):2017-28. PubMed ID: 22851016 [TBL] [Abstract][Full Text] [Related]
13. Integrative transcriptome and proteome analyses of Trichoderma longibrachiatum LC and its cellulase hyper-producing mutants generated by heavy ion mutagenesis reveal the key genes involved in cellulolytic enzymes regulation. Dong M; Wang S; Xu F; Xiao G; Bai J; Wang J; Sun X Biotechnol Biofuels Bioprod; 2022 Jun; 15(1):63. PubMed ID: 35658919 [TBL] [Abstract][Full Text] [Related]
14. Cell dispersion culture for the effective growth of Humicola insolens and efficient enzyme production. Matsumoto H; Koganei K; Nishida N; Koyama Y; Saito S; Kataoka H; Ogihara J; Kasumi T J Biosci Bioeng; 2014 Mar; 117(3):257-62. PubMed ID: 24064300 [TBL] [Abstract][Full Text] [Related]
15. Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis. Liu L; Zhao D; Zheng L; Hsiang T; Wei Y; Fu Y; Huang J Microb Pathog; 2013 Nov; 64():6-17. PubMed ID: 23806215 [TBL] [Abstract][Full Text] [Related]
16. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Yu M; Yu J; Hu J; Huang L; Wang Y; Yin X; Nie Y; Meng X; Wang W; Liu Y Fungal Genet Biol; 2015 Mar; 76():10-9. PubMed ID: 25636735 [TBL] [Abstract][Full Text] [Related]
17. Random mutagenesis and media optimisation for hyperproduction of cellulase from Bacillus species using proximally analysed Saccharum spontaneum in submerged fermentation. Abdullah R; Zafar W; Nadeem M; Iqtedar M; Naz S; Syed Q; Butt ZA Nat Prod Res; 2015; 29(4):336-44. PubMed ID: 25142026 [TBL] [Abstract][Full Text] [Related]
18. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Kogo T; Yoshida Y; Koganei K; Matsumoto H; Watanabe T; Ogihara J; Kasumi T Bioresour Technol; 2017 Jun; 233():67-73. PubMed ID: 28258998 [TBL] [Abstract][Full Text] [Related]
20. Global Reprogramming of Gene Transcription in Zhang F; Li JX; Champreda V; Liu CG; Bai FW; Zhao XQ Front Bioeng Biotechnol; 2020; 8():649. PubMed ID: 32719779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]