BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 29492622)

  • 1. Measuring the Capacitance of Carbon in Ionic Liquids: From Graphite to Graphene.
    Yang J; Papaderakis AA; Roh JS; Keerthi A; Adams RW; Bissett MA; Radha B; Dryfe RAW
    J Phys Chem C Nanomater Interfaces; 2024 Mar; 128(9):3674-3684. PubMed ID: 38476828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructure of Locally Concentrated Ionic Liquids in the Bulk and at Graphite and Gold Electrodes.
    Wang J; Buzolic JJ; Mullen JW; Fitzgerald PA; Aman ZM; Forsyth M; Li H; Silvester DS; Warr GG; Atkin R
    ACS Nano; 2023 Nov; 17(21):21567-21584. PubMed ID: 37883191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hysteresis in Organic Electrochemical Transistors: Distinction of Capacitive and Inductive Effects.
    Bisquert J
    J Phys Chem Lett; 2023 Dec; 14(49):10951-10958. PubMed ID: 38037745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling Nanoscale Heterogeneities at the Bias-Dependent Gold-Electrolyte Interface.
    Antony LSD; Monin L; Aarts M; Alarcon-Llado E
    J Am Chem Soc; 2024 May; 146(19):12933-12940. PubMed ID: 38591960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Helmholtz model describes capacitance profiles of ionic liquids and concentrated aqueous electrolytes.
    Park S; McDaniel JG
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38651812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance Analysis of Capacitive and Faradaic Processes in the Pt/[Dema][TfO] Interface.
    Chen Y; Wippermann K; Rodenbücher C; Suo Y; Korte C
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5278-5285. PubMed ID: 38247120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-Plasticity of an Electrified Ionic Liquid/Electrode Interface: Uncovering Hard-Soft Structuring via Controlled Metal Fill Factor.
    Clarke OJR; Rowley A; Fox RV; Burgess IJ; Atifi A
    ACS Nano; 2024 Jun; 18(22):14716-14725. PubMed ID: 38774972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Another Piece of the Ionic Liquid's Puzzle: Adsorption of Cl
    Siinor L; Ers H; Pikma P
    J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(6):2722-2729. PubMed ID: 38379917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis in memristors produces conduction inductance and conduction capacitance effects.
    Bisquert J; Roldán JB; Miranda E
    Phys Chem Chem Phys; 2024 May; 26(18):13804-13813. PubMed ID: 38655741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting the Sensitivity and Hysteresis of a Gel Polymer Electrolyte by Embedding SiO
    Cedeño Mata M; Orpella A; Dominguez-Pumar M; Bermejo S
    Gels; 2024 Jan; 10(1):. PubMed ID: 38247773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dataset of the electrochemical potential windows for the Au(
    Ueda H; Yoshimoto S
    Data Brief; 2021 Dec; 39():107585. PubMed ID: 34917698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of Contact Angle Hysteresis at Electrified Ionic Liquid-Solid Interfaces.
    Nie P; Jiang X; Zheng X; Guan D
    Phys Rev Lett; 2024 Jan; 132(4):044002. PubMed ID: 38335359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical Charge Coupling Dominates the Hysteresis Effect of Halide Perovskite Devices.
    Bisquert J
    J Phys Chem Lett; 2023 Feb; 14(4):1014-1021. PubMed ID: 36693135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitive hysteresis at the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate-polycrystalline gold interface.
    Lucio AJ; Shaw SK
    Anal Bioanal Chem; 2018 Jul; 410(19):4575-4586. PubMed ID: 29492622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)-ionic liquid interface as a function of potential.
    Li H; Endres F; Atkin R
    Phys Chem Chem Phys; 2013 Sep; 15(35):14624-33. PubMed ID: 23873270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity.
    Li H; Rutland MW; Atkin R
    Phys Chem Chem Phys; 2013 Sep; 15(35):14616-23. PubMed ID: 23836254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ STM and DTS study of the extremely pure [EMIM]FAP/Au(111) interface.
    Borisenko N; Zein El Abedin S; Endres F
    Chemphyschem; 2012 May; 13(7):1736-42. PubMed ID: 22213246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction.
    Atkin R; Borisenko N; Drüschler M; el-Abedin SZ; Endres F; Hayes R; Huber B; Roling B
    Phys Chem Chem Phys; 2011 Apr; 13(15):6849-57. PubMed ID: 21399819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics.
    Drüschler M; Borisenko N; Wallauer J; Winter C; Huber B; Endres F; Roling B
    Phys Chem Chem Phys; 2012 Apr; 14(15):5090-9. PubMed ID: 22402629
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.