BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29492704)

  • 1. Enhanced 2-keto-L-gulonic acid production by applying L-sorbose-tolerant helper strain in the co-culture system.
    Mandlaa ; Sun Z; Wang R; Han X; Xu H; Yang W
    AMB Express; 2018 Feb; 8(1):30. PubMed ID: 29492704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced 2-keto-L-gulonic acid production by a mixed culture of Ketogulonicigenium vulgare and Bacillus megaterium using three-stage temperature control strategy.
    Yang W; Sun H; Dong D; Ma S; Mandlaa ; Wang Z; Xu H
    Braz J Microbiol; 2021 Mar; 52(1):257-265. PubMed ID: 33145708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-sorbose is not only a substrate for 2-keto-L-gulonic acid production in the artificial microbial ecosystem of two strains mixed fermentation.
    Mandlaa ; Yang W; Liu C; Xu H
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):897-904. PubMed ID: 25860124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Siderophores of Bacillus pumilus promote 2-keto-L-gulonic acid production in a vitamin C microbial fermentation system.
    Zhang Q; Lin Y; Shen G; Zhang H; Lyu S
    J Basic Microbiol; 2022 Jul; 62(7):833-842. PubMed ID: 35644014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Keto-L-gulonic acid inhibits the growth of Bacillus pumilus and Ketogulonicigenium vulgare.
    Zhang Q; Lyu S
    World J Microbiol Biotechnol; 2023 Jul; 39(10):257. PubMed ID: 37474882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001.
    Wang P; Zeng W; Du G; Zhou J; Chen J
    J Biotechnol; 2019 Aug; 301():24-34. PubMed ID: 31136757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spaceflight-induced enhancement of 2-keto-L-gulonic acid production by a mixed culture of Ketogulonigenium vulgare and Bacillus thuringiensis.
    Yang W; Han L; Mandlaa M; Chen H; Jiang M; Zhang Z; Xu H
    Lett Appl Microbiol; 2013 Jul; 57(1):54-62. PubMed ID: 23581457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A plate method for rapid screening of Ketogulonicigenium vulgare mutants for enhanced 2-keto-l-gulonic acid production.
    Yang W; Han L; Mandlaa M; Zhang H; Zhang Z; Xu H
    Braz J Microbiol; 2017; 48(3):397-402. PubMed ID: 28292630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined engineering of l-sorbose dehydrogenase and fermentation optimization to increase 2-keto-l-gulonic acid production in Escherichia coli.
    Li D; Wang X; Qin Z; Yu S; Chen J; Zhou J
    Bioresour Technol; 2023 Mar; 372():128672. PubMed ID: 36702324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodotorula mucilaginosa A8, a potential helper strain in a vitamin C microbial fermentation process.
    Zhang Q; Liao L; Lyu S
    J Basic Microbiol; 2024 Jul; 64(7):e2400132. PubMed ID: 38751099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Enhancement of 2-keto-L-gulonic acid production using three-stage pH control strategy].
    Zhang J; Zhou J; Liu L; Liu J; Chen K; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1263-8. PubMed ID: 21141117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of 2-keto-L-gulonic acid by metabolically engineered Escherichia coli.
    Zeng W; Wang P; Li N; Li J; Chen J; Zhou J
    Bioresour Technol; 2020 Dec; 318():124069. PubMed ID: 32916460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-helper-strain co-culture system: a novel method for enhancement of 2-keto-L-gulonic acid production.
    Mandlaa ; Yang W; Han L; Wang Z; Xu H
    Biotechnol Lett; 2013 Nov; 35(11):1853-7. PubMed ID: 23881329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation.
    Liu L; Chen K; Zhang J; Liu J; Chen J
    J Biotechnol; 2011 Dec; 156(3):182-7. PubMed ID: 21924300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Throughput Screening Platform for a FAD-Dependent L-Sorbose Dehydrogenase.
    Shan X; Liu L; Zeng W; Chen J; Zhou J
    Front Bioeng Biotechnol; 2020; 8():194. PubMed ID: 32258011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Interactions in a Vitamin C Industrial Fermentation System: Novel Insights and Perspectives.
    Zhang Q; Lyu S
    Appl Environ Microbiol; 2022 Sep; 88(18):e0121222. PubMed ID: 36073939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous 2-keto-L-gulonic acid fermentation from L-sorbose by Ketogulonigenium vulgare DSM 4025.
    Takagi Y; Sugisawa T; Hoshino T
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1049-56. PubMed ID: 19137290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Gluconobacter cerinus CGMCC 1.110 for direct 2-keto-L-gulonic acid production.
    Qin Z; Chen Y; Yu S; Chen J; Zhou J
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):153-162. PubMed ID: 36445390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of L-sorbose dehydrogenase by docking strategy for 2-keto-L-gulonic acid production in Ketogulonicigenium vulgare and Bacillus endophyticus consortium.
    Chen S; Jia N; Ding MZ; Yuan YJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1507-1516. PubMed ID: 27565673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol.
    Gao L; Hu Y; Liu J; Du G; Zhou J; Chen J
    Metab Eng; 2014 Jul; 24():30-7. PubMed ID: 24792618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.