BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29492884)

  • 1. Double-Stranded RNA-Enriched Preparations to Identify Viroids by Next-Generation Sequencing.
    Navarro B; Di Serio F
    Methods Mol Biol; 2018; 1746():37-43. PubMed ID: 29492884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral Double-Stranded RNAs (dsRNAs) from Plants: Alternative Nucleic Acid Substrates for High-Throughput Sequencing.
    Marais A; Faure C; Bergey B; Candresse T
    Methods Mol Biol; 2018; 1746():45-53. PubMed ID: 29492885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids.
    Barrero RA; Napier KR; Cunnington J; Liefting L; Keenan S; Frampton RA; Szabo T; Bulman S; Hunter A; Ward L; Whattam M; Bellgard MI
    BMC Bioinformatics; 2017 Jan; 18(1):26. PubMed ID: 28077064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms.
    Wu Q; Ding SW; Zhang Y; Zhu S
    Annu Rev Phytopathol; 2015; 53():425-44. PubMed ID: 26047558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of High-Throughput Sequencing for the Study and Diagnosis of Plant Viruses and Viroids in Pollen.
    De Jonghe K; Haegeman A; Foucart Y; Maes M
    Methods Mol Biol; 2018; 1746():131-149. PubMed ID: 29492891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of High-Throughput Sequencing (HTS) for Routine Detection of Citrus Viruses and Viroids.
    Bester R; Maree HJ
    Methods Mol Biol; 2024; 2732():199-219. PubMed ID: 38060127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing viral siRNAs to identify previously undescribed viruses and viroids in a panel of ornamental plant samples structured as a matrix of pools.
    Verdin E; Wipf-Scheibel C; Gognalons P; Aller F; Jacquemond M; Tepfer M
    Virus Res; 2017 Sep; 241():19-28. PubMed ID: 28576697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the validation of high-throughput sequencing (HTS) for routine plant virus diagnostics: measurement of variation linked to HTS detection of citrus viruses and viroids.
    Bester R; Cook G; Breytenbach JHJ; Steyn C; De Bruyn R; Maree HJ
    Virol J; 2021 Mar; 18(1):61. PubMed ID: 33752714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Silico Probe-Based Detection of Citrus Viruses in NGS Data.
    Jooste TL; Visser M; Cook G; Burger JT; Maree HJ
    Phytopathology; 2017 Aug; 107(8):988-993. PubMed ID: 28562184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses.
    Yanagisawa H; Tomita R; Katsu K; Uehara T; Atsumi G; Tateda C; Kobayashi K; Sekine KT
    Viruses; 2016 Mar; 8(3):70. PubMed ID: 27072419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a virus infecting Citrus volkameriana with citrus leprosis-like symptoms.
    Melzer MJ; Sether DM; Borth WB; Hu JS
    Phytopathology; 2012 Jan; 102(1):122-7. PubMed ID: 21916557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenomic next-generation sequencing of viruses infecting grapevines.
    Burger JT; Maree HJ
    Methods Mol Biol; 2015; 1302():315-30. PubMed ID: 25981264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant viruses and viroids in the United Kingdom: An analysis of first detections and novel discoveries from 1980 to 2014.
    Fox A; Mumford RA
    Virus Res; 2017 Sep; 241():10-18. PubMed ID: 28690070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Nucleic Acid Sequencing on Viroid Biology.
    Adkar-Purushothama CR; Perreault JP
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32752288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep sequencing for discovery and evolutionary analysis of plant viruses.
    Roossinck MJ
    Virus Res; 2017 Jul; 239():82-86. PubMed ID: 27876625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mutual titer-enhancing relationship and similar localization patterns between Citrus exocortis viroid and Hop stunt viroid co-infecting two citrus cultivars.
    Lin CY; Wu ML; Shen TL; Hung TH
    Virol J; 2015 Sep; 12():142. PubMed ID: 26377407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Hop stunt viroid infecting Citrus limon in China using small RNAs deep sequencing approach.
    Su X; Fu S; Qian Y; Xu Y; Zhou X
    Virol J; 2015 Jul; 12():103. PubMed ID: 26148502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a multiprobe for the simultaneous detection of viroids infecting citrus trees.
    Cohen O; Batuman O; Stanbekova G; Sano T; Mawassi M; Bar-Joseph M
    Virus Genes; 2006 Dec; 33(3):287-92. PubMed ID: 16990999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on three viral enrichment approaches based on RNA extraction for plant virus/viroid detection using high-throughput sequencing.
    Gaafar YZA; Ziebell H
    PLoS One; 2020; 15(8):e0237951. PubMed ID: 32841302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citrus exocortis viroid: nucleotide sequence and secondary structure of an Australian isolate.
    Visvader JE; Gould AR; Bruening GE; Symons RH
    FEBS Lett; 1982 Jan; 137(2):288-92. PubMed ID: 15768484
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.