These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29493086)

  • 1. Monitoring the Dynamic Process of Formation of Plasmonic Molecular Junctions during Single Nanoparticle Collisions.
    Guo J; Pan J; Chang S; Wang X; Kong N; Yang W; He J
    Small; 2018 Apr; 14(15):e1704164. PubMed ID: 29493086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Amide Bond Formation in a Plasmonic Nanocavity Triggered by Single Nanoparticle Collisions.
    Kong N; Guo J; Chang S; Pan J; Wang J; Zhou J; Liu J; Zhou H; Pfeffer FM; Liu J; Barrow CJ; He J; Yang W
    J Am Chem Soc; 2021 Jul; 143(26):9781-9790. PubMed ID: 34164979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction.
    Xiang ZP; Deng HQ; Peljo P; Fu ZY; Wang SL; Mandler D; Sun GQ; Liang ZX
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3464-3468. PubMed ID: 29377523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing dynamic molecular changes at single-molecule level in a cucurbituril based plasmonic molecular junction.
    Ai Q; Zhou J; Guo J; Pandey P; Liu S; Fu Q; Liu Y; Deng C; Chang S; Liang F; He J
    Nanoscale; 2020 Aug; 12(32):17103-17112. PubMed ID: 32785409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Raman Scattering in Molecular Junctions.
    Iwane M; Fujii S; Kiguchi M
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28820430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating and probing the dynamic intermolecular interactions in plasmonic molecule-pair junctions.
    Ma T; Guo J; Chang S; Wang X; Zhou J; Liang F; He J
    Phys Chem Chem Phys; 2019 Jul; 21(29):15940-15948. PubMed ID: 31263809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative label-free and real-time surface-enhanced Raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays.
    Zhang K; Zhao J; Ji J; Li Y; Liu B
    Anal Chem; 2015 Sep; 87(17):8702-8. PubMed ID: 26267841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of metallic and dielectric nanoparticles in solution by single-nanoparticle collision events at the nanoelectrode.
    Pandey P; Garcia J; Guo J; Wang X; Yang D; He J
    Nanotechnology; 2020 Jan; 31(1):015503. PubMed ID: 31519013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking Nanoelectrochemistry Using Individual Plasmonic Nanocavities.
    Di Martino G; Turek VA; Lombardi A; Szabó I; de Nijs B; Kuhn A; Rosta E; Baumberg JJ
    Nano Lett; 2017 Aug; 17(8):4840-4845. PubMed ID: 28686457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.
    Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J
    Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances.
    Cui X; Qin F; Lai Y; Wang H; Shao L; Chen H; Wang J; Lin HQ
    ACS Nano; 2018 Dec; 12(12):12541-12550. PubMed ID: 30462918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry at One Nanoparticle.
    Mirkin MV; Sun T; Yu Y; Zhou M
    Acc Chem Res; 2016 Oct; 49(10):2328-2335. PubMed ID: 27626289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Imaging of Tuning Electron Tunneling Mediated by a Molecular Monolayer.
    Wang Z; Liu R; Chen HY; Wang H
    JACS Au; 2021 Oct; 1(10):1700-1707. PubMed ID: 34723273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Charged Self-Assembled Monolayers on Single Nanoparticle Collision.
    Dery L; Dery S; Gross E; Mandler D
    Anal Chem; 2023 Feb; 95(5):2789-2795. PubMed ID: 36700557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly based plasmonic nanoparticle array coupling with hexagonal boron nitride nanosheets.
    Gao W; Zhao Y; Yin H; Li H
    Nanoscale; 2017 Sep; 9(35):13004-13013. PubMed ID: 28832047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas.
    Simoncelli S; Roller EM; Urban P; Schreiber R; Turberfield AJ; Liedl T; Lohmüller T
    ACS Nano; 2016 Nov; 10(11):9809-9815. PubMed ID: 27649370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.