These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 29493086)
21. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple. Losurdo M; Yi C; Suvorova A; Rubanov S; Kim TH; Giangregorio MM; Jiao W; Bergmair I; Bruno G; Brown AS ACS Nano; 2014 Mar; 8(3):3031-41. PubMed ID: 24575951 [TBL] [Abstract][Full Text] [Related]
22. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Zrimsek AB; Chiang N; Mattei M; Zaleski S; McAnally MO; Chapman CT; Henry AI; Schatz GC; Van Duyne RP Chem Rev; 2017 Jun; 117(11):7583-7613. PubMed ID: 28610424 [TBL] [Abstract][Full Text] [Related]
23. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions. El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784 [TBL] [Abstract][Full Text] [Related]
24. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Itoh T; Yamamoto YS Analyst; 2016 Aug; 141(17):5000-9. PubMed ID: 27241875 [TBL] [Abstract][Full Text] [Related]
26. Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface. Hao R; Fan Y; Zhang B J Am Chem Soc; 2017 Sep; 139(35):12274-12282. PubMed ID: 28799330 [TBL] [Abstract][Full Text] [Related]
27. Highly Sensitive Electro-Plasmonic Switches Based on Fivefold Stellate Polyhedral Gold Nanoparticles. Zhong L; Jiang Y; Liow C; Meng F; Sun Y; Chandran BK; Liang Z; Jiang L; Li S; Chen X Small; 2015 Oct; 11(40):5395-401. PubMed ID: 26313565 [TBL] [Abstract][Full Text] [Related]
28. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428 [TBL] [Abstract][Full Text] [Related]
29. Ultrasmall Plasmonic Single Nanoparticle Light Source Driven by a Graphene Tunnel Junction. Namgung S; Mohr DA; Yoo D; Bharadwaj P; Koester SJ; Oh SH ACS Nano; 2018 Mar; 12(3):2780-2788. PubMed ID: 29498820 [TBL] [Abstract][Full Text] [Related]
30. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism. Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769 [TBL] [Abstract][Full Text] [Related]
31. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions. Li X; Hu D; Tan Z; Bai J; Xiao Z; Yang Y; Shi J; Hong W Top Curr Chem (Cham); 2017 Apr; 375(2):42. PubMed ID: 28337670 [TBL] [Abstract][Full Text] [Related]
32. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Duan B; Zhou J; Fang Z; Wang C; Wang X; Hemond HF; Chan-Park MB; Duan H Nanoscale; 2015 Aug; 7(29):12606-13. PubMed ID: 26147399 [TBL] [Abstract][Full Text] [Related]
33. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields. Haran G Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801 [TBL] [Abstract][Full Text] [Related]
34. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
35. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. Kwon SJ; Bard AJ J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801 [TBL] [Abstract][Full Text] [Related]
36. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode. Smith SR; Seenath R; Kulak MR; Lipkowski J Langmuir; 2015 Sep; 31(36):10076-86. PubMed ID: 26313341 [TBL] [Abstract][Full Text] [Related]
38. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. Kong N; He J; Yang W J Phys Chem Lett; 2023 Sep; 14(38):8513-8524. PubMed ID: 37722010 [TBL] [Abstract][Full Text] [Related]
39. Liquid-liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Liu J; Li J; Li F; Zhou Y; Hu X; Xu T; Xu W Anal Bioanal Chem; 2018 Aug; 410(21):5277-5285. PubMed ID: 29943263 [TBL] [Abstract][Full Text] [Related]
40. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes. Zhang K; Ji J; Li Y; Liu B Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]