These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 29493285)
1. Recent developments of artificial intelligence in drying of fresh food: A review. Sun Q; Zhang M; Mujumdar AS Crit Rev Food Sci Nutr; 2019; 59(14):2258-2275. PubMed ID: 29493285 [TBL] [Abstract][Full Text] [Related]
2. Optimization of spray drying process parameters for the food bioactive ingredients. Homayoonfal M; Malekjani N; Baeghbali V; Ansarifar E; Hedayati S; Jafari SM Crit Rev Food Sci Nutr; 2024; 64(17):5631-5671. PubMed ID: 36547397 [TBL] [Abstract][Full Text] [Related]
3. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks. Kaveh M; Chayjan RA Acta Sci Pol Technol Aliment; 2014; 13(1):65-78. PubMed ID: 24583385 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive study on applications of artificial neural network in food process modeling. Bhagya Raj GVS; Dash KK Crit Rev Food Sci Nutr; 2022; 62(10):2756-2783. PubMed ID: 33327740 [TBL] [Abstract][Full Text] [Related]
5. Achieving sustainability in heat drying processing: Leveraging artificial intelligence to maintain food quality and minimize carbon footprint. Yudhistira B; Adi P; Mulyani R; Chang CK; Gavahian M; Hsieh CW Compr Rev Food Sci Food Saf; 2024 Sep; 23(5):e13413. PubMed ID: 39137001 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of multilayer perceptron neural networks and adaptive neuro-fuzzy inference systems for the mass transfer modeling of Echium amoenum Fisch. & C. A. Mey. Chasiotis V; Nadi F; Filios A J Sci Food Agric; 2021 Dec; 101(15):6514-6524. PubMed ID: 34000064 [TBL] [Abstract][Full Text] [Related]
7. Recent application of artificial neural network in microwave drying of foods: a mini-review. Yang R; Chen J J Sci Food Agric; 2022 Nov; 102(14):6202-6210. PubMed ID: 35567404 [TBL] [Abstract][Full Text] [Related]
8. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review. Fan K; Zhang M; Mujumdar AS Crit Rev Food Sci Nutr; 2019; 59(8):1357-1366. PubMed ID: 29319330 [TBL] [Abstract][Full Text] [Related]
9. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Zhang M; Chen H; Mujumdar AS; Tang J; Miao S; Wang Y Crit Rev Food Sci Nutr; 2017 Apr; 57(6):1239-1255. PubMed ID: 26055086 [TBL] [Abstract][Full Text] [Related]
10. State of polyphenols in the drying process of fruits and vegetables. McSweeney M; Seetharaman K Crit Rev Food Sci Nutr; 2015; 55(5):660-9. PubMed ID: 24915359 [TBL] [Abstract][Full Text] [Related]
11. Innovative technologies for producing and preserving intermediate moisture foods: A review. Qiu L; Zhang M; Tang J; Adhikari B; Cao P Food Res Int; 2019 Feb; 116():90-102. PubMed ID: 30717022 [TBL] [Abstract][Full Text] [Related]
12. Emerging Trends in Microwave Processing of Spices and Herbs. Rahath Kubra I; Kumar D; Jagan Mohan Rao L Crit Rev Food Sci Nutr; 2016 Oct; 56(13):2160-73. PubMed ID: 25751729 [TBL] [Abstract][Full Text] [Related]
13. Application of non-thermal pretreatment techniques on agricultural products prior to drying: a review. Osae R; Essilfie G; Alolga RN; Akaba S; Song X; Owusu-Ansah P; Zhou C J Sci Food Agric; 2020 Apr; 100(6):2585-2599. PubMed ID: 31975406 [TBL] [Abstract][Full Text] [Related]
14. Pulsed vacuum drying of fruits, vegetables, and herbs: Principles, applications and future trends. Zhang WP; Chen C; Ju HY; Okaiyeto SA; Sutar PP; Yang LY; Li SB; Xiao HW Compr Rev Food Sci Food Saf; 2024 Sep; 23(5):e13430. PubMed ID: 39217522 [TBL] [Abstract][Full Text] [Related]
15. Acquaintance to Artificial Neural Networks and use of artificial intelligence as a diagnostic tool for tuberculosis: A review. Dande P; Samant P Tuberculosis (Edinb); 2018 Jan; 108():1-9. PubMed ID: 29523307 [TBL] [Abstract][Full Text] [Related]
16. Development, validation, and comparison of FE modeling and ANN model for mixed-mode solar drying of potato cylinders. Dhalsamant K J Food Sci; 2021 Aug; 86(8):3384-3402. PubMed ID: 34287892 [TBL] [Abstract][Full Text] [Related]
17. Microwave-convective drying of food materials: A critical review. Kumar C; Karim MA Crit Rev Food Sci Nutr; 2019; 59(3):379-394. PubMed ID: 28872886 [TBL] [Abstract][Full Text] [Related]
18. A review of thin layer drying of foods: theory, modeling, and experimental results. Erbay Z; Icier F Crit Rev Food Sci Nutr; 2010 May; 50(5):441-64. PubMed ID: 20373189 [TBL] [Abstract][Full Text] [Related]
19. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying. Onwude DI; Hashim N; Abdan K; Janius R; Chen G J Sci Food Agric; 2018 Mar; 98(4):1310-1324. PubMed ID: 28758207 [TBL] [Abstract][Full Text] [Related]
20. Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae. Chong JWR; Tang DYY; Leong HY; Khoo KS; Show PL; Chew KW Bioengineered; 2023 Dec; 14(1):2244232. PubMed ID: 37578162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]