These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29493587)

  • 1. An absorption profile centred at 78 megahertz in the sky-averaged spectrum.
    Bowman JD; Rogers AEE; Monsalve RA; Mozdzen TJ; Mahesh N
    Nature; 2018 Feb; 555(7694):67-70. PubMed ID: 29493587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible interaction between baryons and dark-matter particles revealed by the first stars.
    Barkana R
    Nature; 2018 Feb; 555(7694):71-74. PubMed ID: 29493590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probable stellar solution to the cosmological lithium discrepancy.
    Korn AJ; Grundahl F; Richard O; Barklem PS; Mashonkina L; Collet R; Piskunov N; Gustafsson B
    Nature; 2006 Aug; 442(7103):657-9. PubMed ID: 16900193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of the first stars.
    Bromm V
    Rep Prog Phys; 2013 Nov; 76(11):112901. PubMed ID: 24168986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.
    Hill JC; Battaglia N; Chluba J; Ferraro S; Schaan E; Spergel DN
    Phys Rev Lett; 2015 Dec; 115(26):261301. PubMed ID: 26764983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The observable signature of late heating of the Universe during cosmic reionization.
    Fialkov A; Barkana R; Visbal E
    Nature; 2014 Feb; 506(7487):197-9. PubMed ID: 24499820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The signature of the first stars in atomic hydrogen at redshift 20.
    Visbal E; Barkana R; Fialkov A; Tseliakhovich D; Hirata CM
    Nature; 2012 Jul; 487(7405):70-73. PubMed ID: 22722853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud.
    Howk JC; Lehner N; Fields BD; Mathews GJ
    Nature; 2012 Sep; 489(7414):121-3. PubMed ID: 22955622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy of the cosmic blackbody radiation.
    Wilkinson DT
    Science; 1986 Jun; 232(4757):1517-22. PubMed ID: 17773500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flat Universe from high-resolution maps of the cosmic microwave background radiation.
    de Bernardis P ; Ade PA; Bock JJ; Bond JR; Borrill J; Boscaleri A; Coble K; Crill BP; De Gasperis G ; Farese PC; Ferreira PG; Ganga K; Giacometti M; Hivon E; Hristov VV; Iacoangeli A; Jaffe AH; Lange AE; Martinis L; Masi S; Mason PV; Mauskopf PD; Melchiorri A; Miglio L; Montroy T; Netterfield CB
    Nature; 2000 Apr; 404(6781):955-9. PubMed ID: 10801117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-stellar objects: possible local origin.
    Terrell J
    Science; 1966 Dec; 154(3754):1281-8. PubMed ID: 17770295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark matter universe.
    Bahcall NA
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12243-5. PubMed ID: 26417091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of the first low-mass stars from gas with low carbon and oxygen abundances.
    Bromm V; Loeb A
    Nature; 2003 Oct; 425(6960):812-4. PubMed ID: 14574405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 21-cm Fluctuations from Charged Dark Matter.
    Muñoz JB; Dvorkin C; Loeb A
    Phys Rev Lett; 2018 Sep; 121(12):121301. PubMed ID: 30296118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A small amount of mini-charged dark matter could cool the baryons in the early Universe.
    Muñoz JB; Loeb A
    Nature; 2018 May; 557(7707):684-686. PubMed ID: 29849153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does standard cosmology really predict the cosmic microwave background?
    Traunmüller H
    F1000Res; 2020; 9():261. PubMed ID: 34046169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations of the missing baryons in the warm-hot intergalactic medium.
    Nicastro F; Kaastra J; Krongold Y; Borgani S; Branchini E; Cen R; Dadina M; Danforth CW; Elvis M; Fiore F; Gupta A; Mathur S; Mayya D; Paerels F; Piro L; Rosa-Gonzalez D; Schaye J; Shull JM; Torres-Zafra J; Wijers N; Zappacosta L
    Nature; 2018 Jun; 558(7710):406-409. PubMed ID: 29925969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The first stars in the universe and cosmic reionization.
    Barkana R
    Science; 2006 Aug; 313(5789):931-4. PubMed ID: 16917052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57.
    Tytler D; Fan XM; Burles S
    Nature; 1996 May; 381(6579):207-9. PubMed ID: 8622761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision cosmology and the density of baryons in the universe.
    Kaplinghat M; Turner MS
    Phys Rev Lett; 2001 Jan; 86(3):385-8. PubMed ID: 11177837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.