BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29494609)

  • 1. A modified artificial neural network based prediction technique for tropospheric radio refractivity.
    Javeed S; Alimgeer KS; Javed W; Atif M; Uddin M
    PLoS One; 2018; 13(3):e0192069. PubMed ID: 29494609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on Radio Refractivity Gradient in the troposphere using Chaotic Quantifiers.
    Ojo JS; Adelakun AO; Edward OV
    Heliyon; 2019 Aug; 5(8):e02083. PubMed ID: 31428709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the effects of meteorological parameters on water temperature using artificial neural networks.
    Temizyurek M; Dadaser-Celik F
    Water Sci Technol; 2018 Mar; 77(5-6):1724-1733. PubMed ID: 29595175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Preliminary application of Back-Propagation artificial neural network model on the prediction of infectious diarrhea incidence in Shanghai].
    Li J; Gu JZ; Mao SH; Xiao WJ; Jin HM; Zheng YX; Wang YM; Hu JY
    Zhonghua Liu Xing Bing Xue Za Zhi; 2013 Dec; 34(12):1198-202. PubMed ID: 24518019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of emergency department visits for respiratory symptoms using an artificial neural network.
    Bibi H; Nutman A; Shoseyov D; Shalom M; Peled R; Kivity S; Nutman J
    Chest; 2002 Nov; 122(5):1627-32. PubMed ID: 12426263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of short-term water demand prediction model to Seoul.
    Joo CN; Koo JY; Yu MJ
    Water Sci Technol; 2002; 46(6-7):255-61. PubMed ID: 12380999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural network (ANN) modeling for the prediction of odor emission rates from landfill working surface.
    Xu A; Li R; Chang H; Xu Y; Li X; Lin G; Zhao Y
    Waste Manag; 2022 Feb; 138():158-171. PubMed ID: 34896736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of artificial neural-network forecasters for prediction of natural gas consumption.
    Khotanzad A; Elragal H; Lu TL
    IEEE Trans Neural Netw; 2000; 11(2):464-73. PubMed ID: 18249775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food.
    García-Gimeno RM; Hervás-Martínez C; de S
    Int J Food Microbiol; 2002 Jan; 72(1-2):19-30. PubMed ID: 11843410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of predictive models for determining enterococci levels at Gulf Coast beaches.
    Zhang Z; Deng Z; Rusch KA
    Water Res; 2012 Feb; 46(2):465-74. PubMed ID: 22130001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of some weather variables on the signal strength of Maloney FM radio, Nasarawa State, Nigeria.
    Felix A; Abdullahi A; Olufemi A; Jaiyeola OP
    Heliyon; 2024 Mar; 10(5):e25978. PubMed ID: 38449602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer vision-based method for classification of wheat grains using artificial neural network.
    Sabanci K; Kayabasi A; Toktas A
    J Sci Food Agric; 2017 Jun; 97(8):2588-2593. PubMed ID: 27718230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of intracranial pressure signals using artificial neural networks].
    Mariak Z; Swiercz M; Krejza J; Lewko J; Lyson T
    Neurol Neurochir Pol; 2000; 34(6):1209-23. PubMed ID: 11317497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Neural Networks approach to pharmacokinetic model selection in DCE-MRI studies.
    Mohammadian-Behbahani MR; Kamali-Asl AR
    Phys Med; 2016 Dec; 32(12):1543-1550. PubMed ID: 27876537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of plasma levels of aminoglycoside antibiotic in patients with severe illness by means of an artificial neural network simulator.
    Yamamura S; Nishizawa K; Hirano M; Momose Y; Kimura A
    J Pharm Pharm Sci; 1998; 1(3):95-101. PubMed ID: 10948396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models.
    Taşpınar F
    J Air Waste Manag Assoc; 2015 Jul; 65(7):800-9. PubMed ID: 26079553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.
    Martínez-Martínez V; Baladrón C; Gomez-Gil J; Ruiz-Ruiz G; Navas-Gracia LM; Aguiar JM; Carro B
    Sensors (Basel); 2012 Oct; 12(10):14004-21. PubMed ID: 23202032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracranial pressure processing with artificial neural networks: prediction of ICP trends.
    Swiercz M; Mariak Z; Krejza J; Lewko J; Szydlik P
    Acta Neurochir (Wien); 2000; 142(4):401-6. PubMed ID: 10883336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.