These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29494708)

  • 1. A hierarchical anatomical classification schema for prediction of phenotypic side effects.
    Wadhwa S; Gupta A; Dokania S; Kanji R; Bagler G
    PLoS One; 2018; 13(3):e0193959. PubMed ID: 29494708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A similarity-based method for prediction of drug side effects with heterogeneous information.
    Zhao X; Chen L; Lu J
    Math Biosci; 2018 Dec; 306():136-144. PubMed ID: 30296417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting drug side effects by multi-label learning and ensemble learning.
    Zhang W; Liu F; Luo L; Zhang J
    BMC Bioinformatics; 2015 Nov; 16():365. PubMed ID: 26537615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models.
    Muñoz E; Novácek V; Vandenbussche PY
    Brief Bioinform; 2019 Jan; 20(1):190-202. PubMed ID: 28968655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DrugClust: A machine learning approach for drugs side effects prediction.
    Dimitri GM; Lió P
    Comput Biol Chem; 2017 Jun; 68():204-210. PubMed ID: 28391063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug adverse effects using a new Gastro-Intestinal Pacemaker Activity Drug Database (GIPADD).
    Liu JYH; Rudd JA
    Sci Rep; 2023 Apr; 13(1):6935. PubMed ID: 37117211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying predictive features in drug response using machine learning: opportunities and challenges.
    Vidyasagar M
    Annu Rev Pharmacol Toxicol; 2015; 55():15-34. PubMed ID: 25423479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of network link prediction in drug discovery.
    Abbas K; Abbasi A; Dong S; Niu L; Yu L; Chen B; Cai SM; Hasan Q
    BMC Bioinformatics; 2021 Apr; 22(1):187. PubMed ID: 33845763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of human drug targets using machine-learning algorithms.
    Kumari P; Nath A; Chaube R
    Comput Biol Med; 2015 Jan; 56():175-81. PubMed ID: 25437231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting anatomic therapeutic chemical classification codes using tiered learning.
    Olson T; Singh R
    BMC Bioinformatics; 2017 Jun; 18(Suppl 8):266. PubMed ID: 28617230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Machine Learning-based Prediction of Seizure-inducing Action as an Adverse Drug Effect].
    Gao M; Sato M; Ikegaya Y
    Yakugaku Zasshi; 2018; 138(6):809-813. PubMed ID: 29863052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative prediction of drug side effects based on drug-related features.
    Niu Y; Zhang W
    Interdiscip Sci; 2017 Sep; 9(3):434-444. PubMed ID: 28516319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning temporal weights of clinical events using variable importance.
    Zhao J; Henriksson A
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):71. PubMed ID: 27459993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms.
    Ozcift A; Gulten A
    Comput Methods Programs Biomed; 2011 Dec; 104(3):443-51. PubMed ID: 21531475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel decision-tree method for structured continuous-label classification.
    Hu HW; Chen YL; Tang K
    IEEE Trans Cybern; 2013 Dec; 43(6):1734-46. PubMed ID: 23757571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.
    Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Ostermann C; Zell A
    J Chem Inf Model; 2011 Feb; 51(2):203-13. PubMed ID: 21207929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of a Data Split Strategy Involving the Time Axis in Adverse Event Prediction Using Machine Learning.
    Morita K; Mizuno T; Kusuhara H
    J Chem Inf Model; 2022 Sep; 62(17):3982-3992. PubMed ID: 35971760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.