These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29494849)

  • 1. A web-based application for automated quantification of chemical gradients induced in microfluidic devices.
    Cóndor M; Rüberg T; Borau C; Piles J; García-Aznar JM
    Comput Biol Med; 2018 Apr; 95():118-128. PubMed ID: 29494849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal pattern of glucose in a microfluidic device depend on the porosity and permeability of the medium: A finite element study.
    Bonifácio ED; González-Torres LA; Meireles AB; Guimarães MV; Araujo CA
    Comput Methods Programs Biomed; 2019 Dec; 182():105039. PubMed ID: 31472476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic device for efficient chemical testing using Caenorhabditis elegans.
    Song P; Zhang W; Sobolevski A; Bernard K; Hekimi S; Liu X
    Biomed Microdevices; 2015 Apr; 17(2):38. PubMed ID: 25744157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces.
    Shay T; Dickey MD; Velev OD
    Lab Chip; 2017 Feb; 17(4):710-716. PubMed ID: 28150821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.
    Barata D; Spennati G; Correia C; Ribeiro N; Harink B; van Blitterswijk C; Habibovic P; van Rijt S
    Biomed Microdevices; 2017 Sep; 19(4):81. PubMed ID: 28884359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis.
    Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J
    PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Devices for Characterizing Pore-scale Event Processes in Porous Media for Oil Recovery Applications.
    Vavra ED; Zeng Y; Xiao S; Hirasaki GJ; Biswal SL
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of extracellular matrix regulates osteoblast migration: A microfluidic-based study.
    Movilla N; Borau C; Valero C; García-Aznar JM
    Bone; 2018 Feb; 107():10-17. PubMed ID: 29107125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.
    Humayun M; Chow CW; Young EWK
    Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms.
    Wang X; Phan DTT; Zhao D; George SC; Hughes CCW; Lee AP
    Lab Chip; 2016 Mar; 16(5):868-876. PubMed ID: 26879519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips.
    Loessberg-Zahl J; van der Meer AD; van den Berg A; Eijkel JCT
    Lab Chip; 2019 Jan; 19(2):206-213. PubMed ID: 30548051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable microfluidic patterning of protein gradients on hydrogels.
    Allazetta S; Cosson S; Lutolf MP
    Chem Commun (Camb); 2011 Jan; 47(1):191-3. PubMed ID: 20830358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological applications of microfluidic gradient devices.
    Kim S; Kim HJ; Jeon NL
    Integr Biol (Camb); 2010 Nov; 2(11-12):584-603. PubMed ID: 20957276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device.
    García S; Sunyer R; Olivares A; Noailly J; Atencia J; Trepat X
    Lab Chip; 2015 Jun; 15(12):2606-14. PubMed ID: 25977997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.