These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 29494849)

  • 21. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device.
    GarcĂ­a S; Sunyer R; Olivares A; Noailly J; Atencia J; Trepat X
    Lab Chip; 2015 Jun; 15(12):2606-14. PubMed ID: 25977997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.
    Lopez-de la Fuente MS; Moncada-Hernandez H; Perez-Gonzalez VH; Lapizco-Encinas BH; Martinez-Chapa SO
    Rev Sci Instrum; 2013 Mar; 84(3):035103. PubMed ID: 23556848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and validation of a flowless gradient generating microfluidic device for high-throughput drug testing.
    Bachal K; Yadav S; Gandhi P; Majumder A
    Lab Chip; 2023 Jan; 23(2):261-271. PubMed ID: 36475525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of Interstitial Fluid Pressure in Extracellular Matrix Hydrogels in Microfluidic Devices.
    Tien J; Li L; Ozsun O; Ekinci KL
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26158922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microfluidic method to measure small molecule diffusion in hydrogels.
    Evans SM; Litzenberger AL; Ellenberger AE; Maneval JE; Jablonski EL; Vogel BM
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():322-34. PubMed ID: 24411384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogel-based microfluidic systems for co-culture of cells.
    Chen MC; Gupta M; Cheung KC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4848-51. PubMed ID: 19163802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping of Enzyme Kinetics on a Microfluidic Device.
    Rho HS; Hanke AT; Ottens M; Gardeniers H
    PLoS One; 2016; 11(4):e0153437. PubMed ID: 27082243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphometric and computational assessments to evaluate neuron survival and maturation within compartmentalized microfluidic devices: The influence of design variation on diffusion-driven nutrient transport.
    Dixon AR; Horst EN; Garcia JJ; Ndjouyep-Yamaga PR; Mehta G
    Neurosci Lett; 2019 Jun; 703():58-67. PubMed ID: 30885631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling, simulation, and employing dilution-dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency.
    Kashanian F; Masoudi MM; Shamloo A; Habibi-Rezaei M; Moosavi-Movahedi AA
    Bioprocess Biosyst Eng; 2018 May; 41(5):707-714. PubMed ID: 29470707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of complex, static solution gradients in microfluidic channels.
    Wu H; Huang B; Zare RN
    J Am Chem Soc; 2006 Apr; 128(13):4194-5. PubMed ID: 16568971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-step design of hydrogel-based microfluidic assays for rapid diagnostics.
    Puchberger-Enengl D; Krutzler C; Keplinger F; Vellekoop MJ
    Lab Chip; 2014 Jan; 14(2):378-83. PubMed ID: 24270543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study 3D Endothelial Cell Network Formation under Various Oxygen Microenvironment and Hydrogel Composition Combinations Using Upside-Down Microfluidic Devices.
    Hsu HH; Ko PL; Wu HM; Lin HC; Wang CK; Tung YC
    Small; 2021 Apr; 17(15):e2006091. PubMed ID: 33480473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering.
    Shamloo A; Mohammadaliha N; Mohseni M
    J Biotechnol; 2015 Oct; 212():71-89. PubMed ID: 26281975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and characterization of microfluidic liver-on-a-chip using microsomal enzymes.
    Lee J; Kim SH; Kim YC; Choi I; Sung JH
    Enzyme Microb Technol; 2013 Aug; 53(3):159-64. PubMed ID: 23830456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.