BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29494907)

  • 1. Development of a two-stage biotransformation system for mercury-contaminated soil remediation.
    Chen SC; Lin WH; Chien CC; Tsang DCW; Kao CM
    Chemosphere; 2018 Jun; 200():266-273. PubMed ID: 29494907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic study of the single extraction of mercury from soil using sodium-thiosulfate.
    Issaro N; Besancon S; Bermond A
    Talanta; 2010 Oct; 82(5):1659-67. PubMed ID: 20875560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.
    García-Sánchez M; Klouza M; Holečková Z; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14254-68. PubMed ID: 27053055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors.
    Osterwalder S; Huang JH; Shetaya WH; Agnan Y; Frossard A; Frey B; Alewell C; Kretzschmar R; Biester H; Obrist D
    Environ Pollut; 2019 Jul; 250():944-952. PubMed ID: 31085481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral insight into thiosulfate-induced mercury speciation transformation in a historically polluted soil.
    Liu T; Wang J; Feng X; Zhang H; Zhu Z; Cheng S
    Sci Total Environ; 2019 Mar; 657():938-944. PubMed ID: 30677959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A; Wenke A; Biester H
    Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury removal from contaminated soil by thermal treatment with FeCl₃ at reduced temperature.
    Ma F; Zhang Q; Xu D; Hou D; Li F; Gu Q
    Chemosphere; 2014 Dec; 117():388-93. PubMed ID: 25180482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.
    Hseu ZY; Huang YT; Hsi HC
    J Air Waste Manag Assoc; 2014 Sep; 64(9):1013-20. PubMed ID: 25282998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil.
    Száková J; Havlíčková J; Šípková A; Gabriel J; Švec K; Baldrian P; Sysalová J; Coufalík P; Červenka R; Zvěřina O; Komárek J; Tlustoš P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):364-70. PubMed ID: 26761522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of soils from an industrial complex contaminated with elemental mercury.
    Miller CL; Watson DB; Lester BP; Lowe KA; Pierce EM; Liang L
    Environ Res; 2013 Aug; 125():20-9. PubMed ID: 23809204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.
    Wang J; Xia J; Feng X
    J Environ Manage; 2017 Jan; 186(Pt 2):233-239. PubMed ID: 27217079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification and fractionation of mercury in soils from the Chatian mercury mining deposit, southwestern China.
    Li Y; Yang L; Ji Y; Sun H; Wang W
    Environ Geochem Health; 2009 Dec; 31(6):617-28. PubMed ID: 18855104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study on the use of thiosulfate to remediate mercury-contaminated soil.
    Han C; Wang H; Xie F; Wang W; Zhang T; Dreisinger D
    Environ Technol; 2019 Mar; 40(7):813-821. PubMed ID: 29183254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury fractionation in contaminated soils from the Idrija mercury mine region.
    Kocman D; Horvat M; Kotnik J
    J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labile carbon inputs boost microbial contribution to legacy mercury reduction and emissions from industry-polluted soils.
    Hao X; Zhao Q; Zhou X; Huang Q; Liu YR
    J Hazard Mater; 2024 Mar; 465():133122. PubMed ID: 38056276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of organic and inorganic amendments induce changes in the mobility of mercury and macro- and micronutrients of soils.
    García-Sánchez M; Sípková A; Száková J; Kaplan L; Ochecová P; Tlustoš P
    ScientificWorldJournal; 2014; 2014():407049. PubMed ID: 25401138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil.
    Xu J; Kleja DB; Biester H; Lagerkvist A; Kumpiene J
    Chemosphere; 2014 Aug; 109():99-105. PubMed ID: 24873713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.
    Leterme B; Blanc P; Jacques D
    Environ Sci Pollut Res Int; 2014 Nov; 21(21):12279-93. PubMed ID: 24928379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of mercury in chemical fractions of contaminated urban soils of Middle Amur, Russia.
    Kot FS; Matyushkina LA
    J Environ Monit; 2002 Oct; 4(5):803-8. PubMed ID: 12400936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of chromium and mercury polluted calcareous soils using nanoparticles: Sorption -desorption kinetics, speciation and fractionation.
    Moharem M; Elkhatib E; Mesalem M
    Environ Res; 2019 Mar; 170():366-373. PubMed ID: 30623883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.