These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29494973)

  • 21. Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors.
    Fernandez-Fontaina E; Carballa M; Omil F; Lema JM
    Water Res; 2014 Nov; 65():371-83. PubMed ID: 25150522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of micropollutant removal in full-scale membrane bioreactors: calibration and operations to limit the emissions.
    Lejeune A; Choubert JM
    Bioprocess Biosyst Eng; 2019 Nov; 42(11):1879-1892. PubMed ID: 31385036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step.
    Schaar H; Clara M; Gans O; Kreuzinger N
    Environ Pollut; 2010 May; 158(5):1399-404. PubMed ID: 20085854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.
    Xu JC; Chen G; Huang XF; Li GM; Liu J; Yang N; Gao SN
    J Hazard Mater; 2009 Sep; 169(1-3):309-17. PubMed ID: 19443107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland.
    Uggetti E; Hughes-Riley T; Morris RH; Newton MI; Trabi CL; Hawes P; Puigagut J; García J
    Sci Total Environ; 2016 Jul; 559():212-217. PubMed ID: 27062558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal and fate of micropollutants in a sponge-based moving bed bioreactor.
    Luo Y; Guo W; Ngo HH; Nghiem LD; Hai FI; Kang J; Xia S; Zhang Z; Price WE
    Bioresour Technol; 2014 May; 159():311-9. PubMed ID: 24658104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox.
    Avila C; Reyes C; Bayona JM; García J
    Water Res; 2013 Jan; 47(1):315-25. PubMed ID: 23123085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent.
    Matamoros V; García J; Bayona JM
    Water Res; 2008 Feb; 42(3):653-60. PubMed ID: 17826819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of redox condition and inoculum on micropollutant biodegradation by soil and activated sludge communities.
    H R Branco R; Meulepas RJW; van Veelen HPJ; Rijnaarts HHM; Sutton NB
    Sci Total Environ; 2023 Nov; 897():165233. PubMed ID: 37394071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands.
    Morató J; Codony F; Sánchez O; Pérez LM; García J; Mas J
    Sci Total Environ; 2014 May; 481():81-9. PubMed ID: 24594738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites.
    Lee E; Shon HK; Cho J
    J Hazard Mater; 2014 Jul; 276():1-9. PubMed ID: 24862465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micropollutant degradation via extracted native enzymes from activated sludge.
    Krah D; Ghattas AK; Wick A; Bröder K; Ternes TA
    Water Res; 2016 May; 95():348-60. PubMed ID: 27017196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clogging development and hydraulic performance of the horizontal subsurface flow stormwater constructed wetlands: a laboratory study.
    Tang P; Yu B; Zhou Y; Zhang Y; Li J
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9210-9219. PubMed ID: 28220386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of feed characteristics on the removal of micropollutants during the anaerobic digestion of contaminated sludge.
    Barret M; Barcia GC; Guillon A; Carrère H; Patureau D
    J Hazard Mater; 2010 Sep; 181(1-3):241-7. PubMed ID: 20605678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry.
    Evans SE; Davies P; Lubben A; Kasprzyk-Hordern B
    Anal Chim Acta; 2015 Jul; 882():112-26. PubMed ID: 26043098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh.
    Saeed T; Afrin R; Muyeed AA; Sun G
    Chemosphere; 2012 Aug; 88(9):1065-73. PubMed ID: 22673399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of phosphorus, nitrogen and carbon removal in a horizontal subsurface flow constructed wetland.
    Vohla C; Alas R; Nurk K; Baatz S; Mander U
    Sci Total Environ; 2007 Jul; 380(1-3):66-74. PubMed ID: 17081592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Treatment of 1, 2-dichlorobenzene in wastewater by using horizontal subsurface flow constructed wetlands].
    Ding C; Yang TY; Yu Q; Li ZX; Yang CS
    Huan Jing Ke Xue; 2011 Sep; 32(9):2582-7. PubMed ID: 22165224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities.
    Hijosa-Valsero M; Matamoros V; Martín-Villacorta J; Bécares E; Bayona JM
    Water Res; 2010 Mar; 44(5):1429-39. PubMed ID: 19913872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.