These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 29495482)
1. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple. Lei C; Fan S; Li K; Meng Y; Mao J; Han M; Zhao C; Bao L; Zhang D Int J Mol Sci; 2018 Feb; 19(3):. PubMed ID: 29495482 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome Analysis Reveals Multiple Hormones, Wounding and Sugar Signaling Pathways Mediate Adventitious Root Formation in Apple Rootstock. Li K; Liang Y; Xing L; Mao J; Liu Z; Dong F; Meng Y; Han M; Zhao C; Bao L; Zhang D Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30060517 [TBL] [Abstract][Full Text] [Related]
3. An HD-ZIP transcription factor, MxHB13, integrates auxin-regulated and juvenility-determined control of adventitious rooting in Malus xiaojinensis. Li X; Shen F; Xu X; Zheng Q; Wang Y; Wu T; Li W; Qiu C; Xu X; Han Z; Zhang X Plant J; 2021 Sep; 107(6):1663-1680. PubMed ID: 34218490 [TBL] [Abstract][Full Text] [Related]
4. miRNAs associated with auxin signaling, stress response, and cellular activities mediate adventitious root formation in apple rootstocks. Li K; Liu Z; Xing L; Wei Y; Mao J; Meng Y; Bao L; Han M; Zhao C; Zhang D Plant Physiol Biochem; 2019 Jun; 139():66-81. PubMed ID: 30878839 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.). An H; Zhang J; Xu F; Jiang S; Zhang X BMC Plant Biol; 2020 Apr; 20(1):182. PubMed ID: 32334538 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome Analysis Reveals Multiple Genes and Complex Hormonal-Mediated Interactions with PEG during Adventitious Root Formation in Apple. Li S; Tahir MM; Wu T; Xie L; Zhang X; Mao J; Ayyoub A; Xing L; Zhang D; Shao Y Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055162 [TBL] [Abstract][Full Text] [Related]
7. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. Fattorini L; Veloccia A; Della Rovere F; D'Angeli S; Falasca G; Altamura MM BMC Plant Biol; 2017 Jul; 17(1):121. PubMed ID: 28693423 [TBL] [Abstract][Full Text] [Related]
8. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust. Quan J; Meng S; Guo E; Zhang S; Zhao Z; Yang X BMC Genomics; 2017 Feb; 18(1):179. PubMed ID: 28209181 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome Reveals the Regulation of Exogenous Auxin Inducing Rooting of Non-Rooting Callus of Tea Cuttings. Wang S; Wu H; Zhang Y; Sun G; Qian W; Qu F; Zhang X; Hu J Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125650 [TBL] [Abstract][Full Text] [Related]
10. Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11. Mao J; Niu C; Li K; Chen S; Tahir MM; Han M; Zhang D BMC Plant Biol; 2020 Nov; 20(1):536. PubMed ID: 33243138 [TBL] [Abstract][Full Text] [Related]
11. Temporal profiling of physiological, histological, and transcriptomic dissection during auxin-induced adventitious root formation in tetraploid Robinia pseudoacacia micro-cuttings. Uddin S; Munir MZ; Larriba E; Pérez-Pérez JM; Gull S; Pervaiz T; Mahmood U; Mahmood Z; Sun Y; Li Y Planta; 2024 Feb; 259(3):66. PubMed ID: 38332379 [TBL] [Abstract][Full Text] [Related]
12. Auxin and Its Interaction With Ethylene Control Adventitious Root Formation and Development in Apple Rootstock. Bai T; Dong Z; Zheng X; Song S; Jiao J; Wang M; Song C Front Plant Sci; 2020; 11():574881. PubMed ID: 33178245 [TBL] [Abstract][Full Text] [Related]
13. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Agulló-Antón MÁ; Ferrández-Ayela A; Fernández-García N; Nicolás C; Albacete A; Pérez-Alfocea F; Sánchez-Bravo J; Pérez-Pérez JM; Acosta M Physiol Plant; 2014 Mar; 150(3):446-62. PubMed ID: 24117983 [TBL] [Abstract][Full Text] [Related]
14. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Wei K; Wang L; Cheng H; Zhang C; Ma C; Zhang L; Gong W; Wu L Gene; 2013 Feb; 514(2):91-8. PubMed ID: 23201417 [TBL] [Abstract][Full Text] [Related]
15. An Integrated Transcriptome and Proteome Analysis Reveals Putative Regulators of Adventitious Root Formation in Wang Z; Hua J; Yin Y; Gu C; Yu C; Shi Q; Guo J; Xuan L; Yu F Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30862088 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). Wei K; Wang LY; Wu LY; Zhang CC; Li HL; Tan LQ; Cao HL; Cheng H PLoS One; 2014; 9(9):e107201. PubMed ID: 25216187 [TBL] [Abstract][Full Text] [Related]
17. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings. Zhang W; Fan J; Tan Q; Zhao M; Zhou T; Cao F PLoS One; 2017; 12(2):e0172320. PubMed ID: 28231330 [TBL] [Abstract][Full Text] [Related]
18. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. Ludwig-Müller J; Vertocnik A; Town CD J Exp Bot; 2005 Aug; 56(418):2095-105. PubMed ID: 15955788 [TBL] [Abstract][Full Text] [Related]
19. AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting. Velada I; Grzebelus D; Lousa D; M Soares C; Santos Macedo E; Peixe A; Arnholdt-Schmitt B; G Cardoso H Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29462998 [TBL] [Abstract][Full Text] [Related]