These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29495521)

  • 1. A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications.
    Jafary-Zadeh M; Praveen Kumar G; Branicio PS; Seifi M; Lewandowski JJ; Cui F
    J Funct Biomater; 2018 Feb; 9(1):. PubMed ID: 29495521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deployment of a Bulk Metallic Glass-Based Self-Expandable Stent in a Patient-Specific Descending Aorta.
    Praveen Kumar G; Jafary-Zadeh M; Cui F
    ACS Biomater Sci Eng; 2016 Nov; 2(11):1951-1958. PubMed ID: 33440530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoglass-based balloon expandable stents.
    Kumar GP; Yuan S; Cui F; Branicio PS; Jafary-Zadeh M
    J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):73-79. PubMed ID: 30895727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response.
    Huang L; Pu C; Fisher RK; Mountain DJ; Gao Y; Liaw PK; Zhang W; He W
    Acta Biomater; 2015 Oct; 25():356-68. PubMed ID: 26162585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of using bulk metallic glass for self-expandable stent applications.
    Praveen Kumar G; Jafary-Zadeh M; Tavakoli R; Cui F
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1874-1882. PubMed ID: 27239801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in bulk metallic glasses for biomedical applications.
    Li HF; Zheng YF
    Acta Biomater; 2016 May; 36():1-20. PubMed ID: 27045349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable Mg-Zn-Ca-Based Metallic Glasses.
    Jin C; Liu Z; Yu W; Qin C; Yu H; Wang Z
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Properties of High Entropy Alloy Al
    Alagarsamy K; Fortier A; Komarasamy M; Kumar N; Mohammad A; Banerjee S; Han HC; Mishra RS
    Cardiovasc Eng Technol; 2016 Dec; 7(4):448-454. PubMed ID: 27848221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses.
    Biały M; Hasiak M; Łaszcz A
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility.
    Duan X; Yang Y; Zhang T; Zhu B; Wei G; Li H
    Heliyon; 2024 Feb; 10(4):e25515. PubMed ID: 38375258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.
    Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C
    Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review.
    Kiani F; Wen C; Li Y
    Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inherent structure length in metallic glasses: simplicity behind complexity.
    Wu Y; Wang H; Cheng Y; Liu X; Hui X; Nieh T; Wang Y; Lu Z
    Sci Rep; 2015 Aug; 5():12137. PubMed ID: 26245801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid screening of potential metallic glasses for biomedical applications.
    Lin CH; Huang CH; Chuang JF; Huang JC; Jang JS; Chen CH
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4520-6. PubMed ID: 24094154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unlocking the Potential of CuAgZr Metallic Glasses: A Comprehensive Exploration with Combinatorial Synthesis, High-Throughput Characterization, and Machine Learning.
    Wieczerzak K; Groetsch A; Pajor K; Jain M; Müller AM; Vockenhuber C; Schwiedrzik J; Sharma A; Klimashin FF; Michler J
    Adv Sci (Weinh); 2023 Nov; 10(31):e2302997. PubMed ID: 37740703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased corrosion resistance of stent materials by converting current surface film of polycrystalline oxide into amorphous oxide.
    Shih CC; Lin SJ; Chung KH; Chen YL; Su YY
    J Biomed Mater Res; 2000 Nov; 52(2):323-32. PubMed ID: 10951371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications.
    Xu Y; Wang W; Yu F; Yang S; Yuan Y; Wang Y
    Acta Biomater; 2023 Apr; 161():309-323. PubMed ID: 36858165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of biodegradable Zn-Cu-Mn alloy micro-tubes and vascular stents: Microstructure, texture, mechanical properties and corrosion behavior.
    Jiang J; Huang H; Niu J; Zhu D; Yuan G
    Acta Biomater; 2022 Oct; 151():647-660. PubMed ID: 35917908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vivo investigations and cytotoxicity tests on Ti/Zr-based metallic glasses with various Cu contents.
    Lin CH; Chen CH; Huang YS; Huang CH; Huang JC; Jang JSC; Lin YS
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():308-317. PubMed ID: 28532034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.