These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29495525)

  • 1. De Novo Transcriptome Assembly and Characterization of the Synthesis Genes of Bioactive Constituents in Abelmoschus esculentus (L.) Moench.
    Zhang C; Dong W; Gen W; Xu B; Shen C; Yu C
    Genes (Basel); 2018 Feb; 9(3):. PubMed ID: 29495525
    [No Abstract]   [Full Text] [Related]  

  • 2. The okra (Abelmoschus esculentus) transcriptome as a source for gene sequence information and molecular markers for diversity analysis.
    Schafleitner R; Kumar S; Lin CY; Hegde SG; Ebert A
    Gene; 2013 Mar; 517(1):27-36. PubMed ID: 23299025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant and Anti-Fatigue Constituents of Okra.
    Xia F; Zhong Y; Li M; Chang Q; Liao Y; Liu X; Pan R
    Nutrients; 2015 Oct; 7(10):8846-58. PubMed ID: 26516905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Properties, Bioactivities, and Applications of Polysaccharides from Okra [
    Zhu XM; Xu R; Wang H; Chen JY; Tu ZC
    J Agric Food Chem; 2020 Nov; ():. PubMed ID: 33205968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.
    Rai A; Nakaya T; Shimizu Y; Rai M; Nakamura M; Suzuki H; Saito K; Yamazaki M
    Planta Med; 2018 Aug; 84(12-13):920-934. PubMed ID: 29843181
    [No Abstract]   [Full Text] [Related]  

  • 6. Purification, structural elucidation and physicochemical properties of a polysaccharide from Abelmoschus esculentus L (okra) flowers.
    Zhang W; Xiang Q; Zhao J; Mao G; Feng W; Chen Y; Li Q; Wu X; Yang L; Zhao T
    Int J Biol Macromol; 2020 Jul; 155():740-750. PubMed ID: 32240742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abscisic acid identification in Okra,
    Daliu P; Annunziata G; Tenore GC; Santini A
    Nat Prod Res; 2020 Jan; 34(1):3-9. PubMed ID: 31282220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative physiological and full-length transcriptome analyses reveal the molecular mechanism of melatonin-mediated salt tolerance in okra (Abelmoschus esculentus L.).
    Zhan Y; Wu T; Zhao X; Wang Z; Chen Y
    BMC Plant Biol; 2021 Apr; 21(1):180. PubMed ID: 33858330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization and anti-lipotoxicity effects of a pectin from okra (Abelmoschus esculentus (L.) Moench).
    Liao Z; Li Y; Liao L; Shi Q; Kong Y; Hu J; Cai Y
    Int J Biol Macromol; 2023 May; 238():124111. PubMed ID: 36948330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular docking and
    Fouda K; Mohamed RS
    Food Funct; 2024 Apr; 15(7):3566-3582. PubMed ID: 38466075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Abelmoschus esculentus (okra) on metabolic syndrome: A review.
    Esmaeilzadeh D; Razavi BM; Hosseinzadeh H
    Phytother Res; 2020 Sep; 34(9):2192-2202. PubMed ID: 32222004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic enhancement of okra [
    Suma A; Joseph John K; Bhat KV; Latha M; Lakshmi CJ; Pitchaimuthu M; Nissar VAM; Thirumalaisamy PP; Pandey CD; Pandey S; Kumar A; Gautam RK; Singh GP
    Front Plant Sci; 2023; 14():1284070. PubMed ID: 38023890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abelmoschus esculentus (L.) Moench improved blood glucose, lipid, and down-regulated PPAR-α, PTP1B genes expression in diabetic rats.
    Nasrollahi Z; ShahaniPour K; Monajemi R; Ahadi AM
    J Food Biochem; 2022 Jul; 46(7):e14097. PubMed ID: 35102562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased cellulose-degrading enzyme activity causes pod hardening of okra (Abelmoschus esculentus L. Moench).
    Ren J; Wang JR; Gao MY; Qin L; Wang Y
    Plant Physiol Biochem; 2021 May; 162():624-633. PubMed ID: 33774467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome analysis provides insight into nitric oxide suppressing lignin accumulation of postharvest okra (Abelmoschus esculentus L.) during cold storage.
    Sun M; Yang XL; Zhu ZP; Xu QY; Wu KX; Kang YJ; Wang H; Xiong AS
    Plant Physiol Biochem; 2021 Oct; 167():49-67. PubMed ID: 34332254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq.
    Shen C; Guo H; Chen H; Shi Y; Meng Y; Lu J; Feng S; Wang H
    Sci Rep; 2017 Mar; 7(1):187. PubMed ID: 28298629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja.
    Xu X; Yin Z; Chen J; Wang X; Peng D; Shangguan X
    PLoS One; 2016; 11(8):e0160279. PubMed ID: 27483006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench).
    Sengkhamparn N; Verhoef R; Schols HA; Sajjaanantakul T; Voragen AG
    Carbohydr Res; 2009 Sep; 344(14):1824-32. PubMed ID: 19061990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological activity and development of functional foods fortified with okra (
    Agregán R; Pateiro M; Bohrer BM; Shariati MA; Nawaz A; Gohari G; Lorenzo JM
    Crit Rev Food Sci Nutr; 2023; 63(23):6018-6033. PubMed ID: 35037792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of okra (Abelmoschus esculentus L.) seedlings under salt stress.
    Zhan Y; Wu Q; Chen Y; Tang M; Sun C; Sun J; Yu C
    BMC Genomics; 2019 May; 20(1):381. PubMed ID: 31096913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.