BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29495536)

  • 21. Comparison of Micropore Distribution in Cell Walls of Softwood and Hardwood Xylem.
    Donaldson LA; Cairns M; Hill SJ
    Plant Physiol; 2018 Nov; 178(3):1142-1153. PubMed ID: 30217826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling of the hygroelastic behaviour of normal and compression wood tracheids.
    Joffre T; Neagu RC; Bardage SL; Gamstedt EK
    J Struct Biol; 2014 Jan; 185(1):89-98. PubMed ID: 24184469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell differentiation, secondary cell-wall formation and transformation of callus tissue of Pinus radiata D. Don.
    Möller R; McDonald AG; Walter C; Harris PJ
    Planta; 2003 Sep; 217(5):736-47. PubMed ID: 12811558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation.
    Rosner S; Karlsson B; Konnerth J; Hansmann C
    Tree Physiol; 2009 Nov; 29(11):1419-31. PubMed ID: 19797244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures.
    Atwell BJ; Henery ML; Whitehead D
    Tree Physiol; 2003 Jan; 23(1):13-21. PubMed ID: 12511300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlative light and scanning electron microscopy of the same sections gives new insights into the effects of pectin lyase on bordered pit membranes in Pinus radiata wood.
    West M; Vaidya A; Singh AP
    Micron; 2012 Aug; 43(8):916-9. PubMed ID: 22464884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cavitation of intercellular spaces is critical to establishment of hydraulic properties of compression wood of Chamaecyparis obtusa seedlings.
    Nakaba S; Hirai A; Kudo K; Yamagishi Y; Yamane K; Kuroda K; Nugroho WD; Kitin P; Funada R
    Ann Bot; 2016 Mar; 117(3):457-63. PubMed ID: 26818592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression.
    Cato S; McMillan L; Donaldson L; Richardson T; Echt C; Gardner R
    Plant Mol Biol; 2006 Mar; 60(4):565-81. PubMed ID: 16525892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seasonal Developing Xylem Transcriptome Analysis of
    Nguyen TTT; Kim MH; Park EJ; Lee H; Ko JH
    Genes (Basel); 2023 Aug; 14(9):. PubMed ID: 37761838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae).
    Nagai S; Utsumi Y
    Am J Bot; 2012 Sep; 99(9):1553-61. PubMed ID: 22917949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frost tolerance and ice formation in Pinus radiata needles: ice management by the endodermis and transfusion tissues.
    Roden JS; Canny MJ; Huang CX; Ball MC
    Funct Plant Biol; 2009 Feb; 36(2):180-189. PubMed ID: 32688637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xylem wall collapse in water-stressed pine needles.
    Cochard H; Froux F; Mayr S; Coutand C
    Plant Physiol; 2004 Jan; 134(1):401-8. PubMed ID: 14657404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topochemical and transmission electron microscopic studies of bacterial decay in pine (Pinus sylvestris L.) harbour foundation piles.
    Rehbein M; Koch G; Schmitt U; Huckfeldt T
    Micron; 2013 Jan; 44():150-8. PubMed ID: 22743130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation.
    Du S; Sugano M; Tsushima M; Nakamura T; Yamamoto F
    J Plant Res; 2004 Apr; 117(2):171-4. PubMed ID: 15015079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wood Modification by Furfuryl Alcohol Resulted in a Delayed Decomposition Response in
    Skrede I; Solbakken MH; Hess J; Fossdal CG; Hegnar O; Alfredsen G
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques.
    Zhang Z; Ma J; Ji Z; Xu F
    Microsc Microanal; 2012 Dec; 18(6):1459-66. PubMed ID: 23237521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of the Longitudinal Tensile Creep on the Stiffness of Radiata Pine (
    Erazo O; Vergara-Figueroa J; Valenzuela P; Gacitúa W
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bordered Pit Formation in Cell Walls of Spruce Tracheids.
    Chukhchin DG; Vashukova K; Novozhilov E
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation.
    Li X; Wu HX; Southerton SG
    Gene; 2011 Nov; 487(1):62-71. PubMed ID: 21839815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the structure, expression and function of Pinus radiata D. Don arabinogalactan-proteins.
    Putoczki TL; Pettolino F; Griffin MD; Möller R; Gerrard JA; Bacic A; Jackson SL
    Planta; 2007 Oct; 226(5):1131-42. PubMed ID: 17569081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.